IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AIIN GAMES, VOL. 2, NO. 4, DECEMBER 2010 303

The Power of Forgetting: Improving the
Last-Good-Reply Policy in Monte Carlo Go

Hendrik Baier and Peter D. Drake

Abstract—The dominant paradigm for programs playing the
game of Go is Monte Carlo tree search. This algorithm builds a
search tree by playing many simulated games (playouts). Each
playout consists of a sequence of moves within the tree followed by
many moves beyond the tree. Moves beyond the tree are generated
by a biased random sampling policy. The recently published
last-good-reply policy makes moves that, in previous playouts,
have been successful replies to immediately preceding moves. This
paper presents a modification of this policy that not only remem-
bers moves that recently succeeded but also immediately forgets
moves that recently failed. This modification provides a large
improvement in playing strength. We also show that responding to
the previous two moves is superior to responding to the previous
one move. Surprisingly, remembering the win rate of every reply
performs much worse than simply remembering the last good
reply (and indeed worse than not storing good replies at all).

Index Terms—Board games, Go, machine learning, Monte Carlo
methods.

I. INTRODUCTION

O [2] is a deterministic, zero-sum, two-player game of

perfect information. Writing programs to play Go well
stands as a grand challenge of artificial intelligence [5]. The
strongest programs are only able to defeat professional human
players with the aid of large handicaps, allowing the program to
play several additional moves at the beginning of the game. Even
this performance is the result of a recent breakthrough: before
2008, programs were unable to defeat professional players on
the full 19 x 19 board despite enormous handicaps [12], [17].

This breakthrough, which lies at the core of all strong, modern
Go programs, is Monte Carlo tree search (MCTS) [16], [7]. This
algorithm combines classical artificial intelligence (tree search)
with statistical sampling.

The next section of this paper describes MCTS in detail. Var-
ious techniques for learning within MCTS are then reviewed.
Last-good-reply policies, including Drake’s original policy [9]
and the new variants introduced in this paper, are covered in an-
other section. Experimental results are followed by conclusions
and future work.
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Fig. 1. Monte Carlo Tree Search.

II. MONTE CARLO TREE SEARCH

MCTS grows a search tree by repeatedly simulating complete
games (Fig. 1). Each such simulation, called a playout, con-
sists of three phases: selection, sampling, and backpropagation.
Selection (bold lines) chooses a sequence of moves within the
search tree. Sampling (dashed lines) completes the game with
random moves. Backpropagation improves the tree to take into
account the winner of the playout. This includes updating the
win rate stored at each node and, as shown at the right of the
figure, adding a node along the path taken in the playout.

The tree grows unevenly, with the more promising branches
being explored more deeply. After thousands of playouts, the
best move from the root (defined as, e.g., the move with the most
wins) is returned.

Selection policies must strike a balance between exploring
untried or undersampled branches and exploiting the informa-
tion gathered so far. Specifically, simply choosing the move
with the highest win rate at every point would lead to some
moves being prematurely abandoned after a few “unlucky”
playouts. The first successful MCTS programs resolved this
issue by adding to the win rate an exploration term, which
encourages revisiting undersampled nodes [16].

III. LEARNING IN MONTE CARLO TREE SEARCH

MCTS can be viewed as an inductive machine learning tech-
nique in that its behavior changes based on the results of past
playouts. Within each playout, the algorithm selects moves that
have previously fared well in similar game states. Much hinges
on how the sets of “similar” states are defined. If they are too
small, very little information is available for each state. If they
are too large, the information becomes extremely noisy.

In the discussion that follows, a state of the game is identified
with the sequence of moves leading to that state. A state s is a
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sequence of moves, s; is the ith move in that sequence, and |s|
is the length of the sequence. Thus, s ;) is the last move in the
sequence. N (s) is the set of states considered similar to s, i.e.,
the neighborhood of s.

A. Learning for the Selection Phase

The narrowest definition of similarity has exactly one state in
each neighborhood. Thus

N(s) = {s}.

This is the definition used by the pure MCTS algorithm de-
scribed in the previous section. It is completely safe, but fails to
take full advantage of each playout.

At the other extreme would be to have only one neighborhood

N(s)=S58

where S is the set of all possible states.

This algorithm simply maintains win rates for each move re-
gardless of context. It requires very little memory but is not very
effective. The earliest work on Monte Carlo Go [4] introduced
this approach, which is known as all-moves-as-first (AMAF).

A transposition table [19] ignores the history of game states,
considering only the stones on the board

N(s) = {r:c(r) = c(s)}

where ¢ (s) is the configuration of the board in state s.

The stated definition is not entirely safe in Go because of the
ko rule forbidding full-board repetitions: the legality of a move
may depend on how the current state was reached. Fortunately,
keeping track of the simple ko point (if any) and the color to play
catches most collisions. With this addition, the neighborhood of
s is the set of states r that 1) have the same configuration of
stones, 2) have the same simple ko point, and 3) have the same
color to play. Formally

N(s)={r:c(r)=c(s) Nk(r) = k(s) Ar| = |s|(mod2)}

where k (s) is the simple ko point in state s (or null if there is
no such point). The last conjunct avoids conflating states with
different colors to play.

A broader and more powerful definition of similarity is used
by rapid action value estimation (RAVE) [14]. In RAVE, the
neighborhood of a state consists of its successors, i.e., those
states (move sequences) r of which s is a prefix. Formally

N(s)={r:|r| > [s| AVt < |s],r = 5:}-

This definition is asymmetric. Indeed, it is antisymmetric, i.e.,
re N (s)—s¢N(r)forallr # s.

In RAVE, moves played directly from a state and from any
subsequent states in that playout are taken into account. Because
of the large neighborhoods, the data from RAVE are consider-
ably noisier than the raw MCTS data; they are discounted ac-
cordingly. On the other hand, RAVE produces many more data
per playout, quickly providing information as to which moves
are most promising. A surprising side effect of RAVE is that

the exploration term becomes unnecessary [6]; moves that have
been temporarily abandoned by selection are still available in
sampling.

B. Learning for the Sampling Phase

It is much rarer for learning to be applied during the sam-
pling phase. Many programs use “heavy playout” policies that
bias the sampling toward better moves. Such a policy may be
constructed by hand or learned offline [3], [8], [14]. Dynami-
cally updating the sampling policy is more difficult because of
the need for speed, the need for diversity, and the large, com-
plex, sparsely sampled state space.

Two techniques applied outside Go are the contextual Monte
Carlo (CMC) and the predicate average sampling technique
(PAST).

In CMC [18], the neighborhood depends on the current
player’s previous move s|,—;. Any state where that move was
also played by the current player (although not necessarily at
time |s| — 1) is part of the neighborhood

N(s)=A{r:Ji:r; =sj5-1 Ai =|[s| — 1(mod 2)}.

PAST [11] was applied to the general game-playing problem,
where states are defined in predicate logic. The neighborhood
consists of states sharing some true predicate with s

N(s)={r:3p:p(r) Ap(s)}

where p is chosen from the set of predicates.

The last-good-reply-1 policy (LGR-1) [9], while not domain
specific, has been successfully applied to Go. In this policy, the
neighborhoods consist of all states with the same last move

N(s) ={r: 7y = 815 A |r| = |s|(mod 2)}.

This can be thought of as a variation on PAST where the only
predicates are of the form “the previous move was X.”

The last-good-reply-2 (LGR-2) policy narrows the neighbor-
hood to those states where the last two moves are the same

N(s) =A{r: s = 815 ATjrj1 = Sjsj=1 Alr| = |s|(mod 2)}.

Similar neighborhoods were foreshadowed in [4], where the use
of win rates across the neighborhood was suggested, as well
as [15], where the neighborhoods have been used for move or-
dering in an alpha—beta context.

The experiments in this paper, based on the work of the first
author in [1], focus on last-good-reply policies. These policies
are described in more detail in Section IV.

IV. LAST-GOOD-REPLY POLICIES

A. Last-Good-Reply-1

Each move in a game (except the first) can be thought of as
a reply to the previous move. A reply is successful if the player
who makes the reply goes on to win the playout. LGR-1 main-
tains, for each move (including location and color), the last suc-
cessful reply to that move. Only one reply is stored for each
move.
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Fig. 2. Updating the reply table in LGR-1.

In the backpropagation phase at the end of each playout, each
of the winner’s moves is stored as a good reply to its prede-
cessor. Any previously stored reply is overwritten.

The updating of the reply table is illustrated in Fig. 2. In the
first playout, the program learns that a good reply to white B is
black C. This is written ®>@. Black also learns replies ©+0@
and ®*0@. The second playout stores three good replies for
white: @*®, @>O, and @>®. The third playout adds black
replies ®>@ and ©>@ and overwrites ®*@ with ©+0.

In the sampling phase, when it is time to choose a move, the
last good reply to the previous move is used if possible. It may be
that no good reply has yet been stored. The stored reply may also
be illegal because the current context differs from that where the
reply was originally played. In either of these cases, the default
sampling policy is used instead.

B. Last-Good-Reply-2

LGR-2 extends LGR-1 by additionally keeping track of the
previous two moves instead of just the previous move. This is
illustrated in Fig. 3.

By placing each reply in a more detailed context than
LGR-1, LGR-2 narrows the neighborhoods of “similar” states.
Move suggestions are therefore based on fewer, more relevant
samples.

Whenever the two-move reply table provides no stored an-
swer in the sampling phase, the policy defaults to the one-move
reply table of LGR-1, which is maintained separately. These
data are less accurate, but more readily available; one-move
contexts create larger neighborhoods that are sampled more fre-
quently. (See also the experiments in Section V-D.)

C. Forgetting

In the current work, we found that the last-good-reply policy
could be improved with the addition of forgetting. Specifi-
cally, at the end of the playout, in addition to learning that
the winner’s replies were good, we delete any stored replies
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Fig. 3. Updating the reply table in LGR-2.
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Fig. 4. Updating the reply table in LGRF-1.

made by the loser. The version of LGR-1 with forgetting is
abbreviated LGRF-1.

This policy is illustrated in Fig. 4. In the second playout,
black’s replies ®>@ and ©+>0@ are deleted because they were
played but black still lost. In the third playout, white’s reply
@>® is deleted.

LGRF-2 is defined analogously to LGR-2. Replies to one-
move and two-move contexts are stored independently when-
ever they appear in a winning playout, and deleted whenever
they appear in a losing one. When no applicable reply to the pre-
vious two moves is available, LGRF-2 falls back to the single-
move replies of LGRF-1.

D. Storing Win Rates

If storing the last good reply to the previous move is helpful,
it seems reasonable to store the win rates of every possible
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reply. The Softmax-1 policy maintains such rates. In sampling,
Softmax-1 chooses a reply to the previous move according to a
Gibbs (or Boltzmann) softmax policy: it chooses move a with
probability

exp(winrate(a)/T') /Z exp(winrate(s) /T

where 2 sums over all available moves, and 7' is a temperature
parameter.

Softmax-1 could have all of the benefits of a forgetting policy
and also make use of more data from previous runs. On the
other hand, paying too much attention to the past may limit this
policy’s ability to respond to changing conditions.

Softmax-2 could be defined analogously, but we did not ex-
periment with such a policy.

V. EXPERIMENTAL RESULTS

A. Methods

All experiments were run using Orego [10] version 7.06.
Orego was run on a CentOS Linux cluster of five nodes, each
using 8-GB RAM and two 6-core AMD Opteron 2427 proces-
sors running at 2.2 GHz, giving the cluster a total of 60 cores.
The program was run with Java 1.6, using the command-line
options -ea (enabling assertions), -server (server mode, turning
on the just-in-time compiler), and -Xmx1024M (allocating
extra memory).

The default version of Orego contains a number of other fea-
tures not described in detail here, including a transposition table,
RAVE, and a sampling policy similar to that described in [13].

B. Speed

In order to examine the effect of the last-good-reply policies
on the runtime speed of Orego, the speed (in thousands of play-
outs per second) was measured in a 10-s run starting from an
empty board. Fig. 5 shows the averages of ten such runs for dif-
ferent numbers of threads. Since the reply tables are accessed
atomically, all threads share the same tables.
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Fig. 6. 19 x 19 win rates versus GNU Go.

Since no tested variant of LGR slowed down Orego by any
significant amount, the experiments in the following sections
were conducted with constant playouts per move instead of con-
stant time per move.

C. Playing Strength

To test the effectiveness of the various policies described in
Section IV, we pitted Orego (using various policies) against
GNU Go 3.8 running at its default level of 10. All games used
Chinese (area) scoring and 7.5 points komi. Both 19 x 19 and
9 x 9 experiments were conducted.

On the 19 x 19 board, 600 games per condition were played
by Orego (300 as black, 300 as white). Policies included default
Orego, LGR-1, LGR-2, LGRF-1, and LGRF-2. Each policy was
run for 8000, 16000, and 32000 playouts per move. (These
playouts were divided over two threads.) The results are shown
in Fig. 6. Error bars indicate 95% confidence intervals.

At all numbers of playouts, the following strength relations
are significant (p < 0.05, two-tailed z-test):

Default < {LGR-1,LGR-2} < LGRF-1 < LGRF-2.

The Softmax-1 policy has only been tested with 8000 play-
outs per move. Across a variety of temperature parameters tested
(0.001, 0.01, 0.1, and 1.0), T" = 0.1 had the most success with
only three games won out of 600. As a result, experiments with
Softmax were abandoned.

The results are quite clear: forgetting provides a large im-
provement. Responding to the previous two moves is better than
responding to the previous move, but only if forgetting is used.
The Softmax-1 policy fails miserably.

On the 9 x 9 board, 1200 games per condition were played by
Orego (600 as black, 600 as white). Policies used and playouts
per move were identical to the 19 x 19 conditions. The results
are shown in Fig. 7.

On the small board, the LGR policies without forgetting are
no improvement to the default policy; for 8000 and 16000 play-
outs, LGR-2 is significantly weaker than even default Orego.
LGRF-1 and LGRF-2 do not differ significantly in strength
for any tested number of playouts. With the one exception of
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Fig. 7. 9 x 9 win rates versus GNU Go.

TABLE 1
RESULTS OF LOOKUPS FROM LAST-GOOD-REPLY TABLES

LGR-1 LGR-2 LGRF-1 | LGRF-2
Legal (2) 45.2% 27.7%
Illegal (2) 54.7% 43.5%
None (2) 0.1% 28.8%
Legal 44.5% 23.5% 27.1% 24.0%
Illegal 55.5% 76.5% 43.7% 52.8%
None 0.0% 0.0% 29.3% 23.2%

LGR-1 at 32000 playouts, both forgetting policies are signif-
icantly stronger than default Orego, LGR-1, and LGR-2 at all
numbers of playouts.

D. Reply Table Contents and Usage

To better understand the effects of forgetting, several experi-
ments on the contents of the reply tables were conducted.

In the first experiment, we determined the proportion of table
accesses that return a playable reply, as opposed to an illegal
move or no stored reply. Table I shows the results averaged
over 100 19 x 19 games of Orego against itself, playing with
8000 playouts per move. For LGR-2 and LGRF-2, the first three
rows of the table show the results of probing the two-move
reply tables. For those times when Orego found an illegal or no
move there, the last three rows show the results of accessing the
one-move reply tables as fallback. (This is why those columns
do not add up to 100%.) For example, in the LGRF-2 policy,
27.7% of the table lookups resulted in legal moves. Of those
that did not, 24.0% found legal moves in the fallback LGRF-1
policy.

LGREF policies return fewer legal moves than LGR policies
and fall back to the default policy more often. The reason is
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Fig. 8. Number of replies as a function of duration in the reply table.

that there are more empty slots in the reply tables, which can
only appear at the very beginning of the search in nonforget-
ting policies. Forgetting reduces the content of the reply tables
to more recently successful move answers. Falling back to the
default policy allows static knowledge from that policy to affect
the reply tables.

In the second experiment, the average duration of moves in
the reply tables was measured. In 100 games of self-play (as
above), we found average durations of 8.639 (LGR-1), 4.185
(LGRF-1), 2544.958 (LGR-2), and 1700.780 (LGRF-2) play-
outs. The durations for the policies remembering two moves are
much larger because pairs of consecutive moves occur less often
than individual moves, offering fewer opportunities to update
the reply tables.

The third experiment examined the distribution of durations
for LGR-1 and LGRF-1 in more detail. Over 100 games of self-
play, we gathered data on how many replies survived for various
numbers of playouts. The results are shown in Fig. 8. Note that
the vertical axis is logarithmic.

The results show two things. First, most replies are removed
from the table very quickly. Second, forgetting sharpens this
distribution.

Taken together, these experiment demonstrate that forgetting
increases the fluctuation of table entries. Unless a reply consis-
tently wins playouts in which it is played, it is more quickly
deleted. (It may reappear later if generated again by the default
policy.) This increases the algorithm’s exploration of alternate
replies.

E. Locality

In [9], Drake argued that the LGR-1 policy allows MCTS to
perform local search. To further test this hypothesis, we gath-
ered data on the Euclidean distance between each reply and its
predecessor as a function of the reply’s duration. The results,
averaged over 100 games of self-play, are shown in Fig. 9.

Replies that survive longer in the table are more local, i.e.,
they are closer to their predecessors than more short-lived
replies. This effect is stronger with forgetting. Furthermore,
forgetting reduces the mean distance at all durations.
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F. Repeated Moves

In most playouts, many moves appear repeatedly. The LGRF
policies as described above store every move played by the win-
ning player as a good reply. Thus, if a move appears more than
once in a playout (due to capturing), only the last reply in the
playout remains in the table. This is conceivably harmful, as the
board will have changed so much by the end of a playout that
replies found then will be less relevant to other playouts than
replies found at the beginning.

In the last experiment described in this paper, an alternative
version of LGRF-1 was tested that saves replies only to the first
appearance in a playout of any given move. The policy is called
LGRF-1-ND (no duplicates). Fig. 10 compares its success to
that of LGRF-1 (over 600 games, as in Section V-C) as described
above.

No significant difference in performance could be found.

VI. CONCLUSION AND FUTURE WORK

This paper has reviewed learning in MCTS, including
learning within the tree in the selection phase (transposition
tables and RAVE) and beyond the tree in the sampling phase

(CMC, PAST, and last-good-reply policies). All of these can be
described as using information from previous playouts when a
given move was played in “similar” situations, using different
definitions of “similar.”

We have presented three new policies: forgetting versions
of last-good-reply-1 (LGRF-1) and last-good-reply-2 (LGRF-2)
and a policy that maintains win rates for each reply (Softmax-1).
The first two policies offered significant improvements, with
LGREF-2 being stronger in 19 x 19 Go. The Softmax-1 policy
was significantly weaker than a default policy, which uses no
learning in the sampling phase.

We believe the addition of forgetting to last-good-reply poli-
cies makes them stronger for two reasons. First, forgetting pre-
serves diversity. A “forced” move will only persist as a stored
reply if it consistently wins; in any other situation, exploration
is preferable. Second, forgetting allows the algorithm to adapt
more rapidly to changing conditions. If a given reply fares well
in one context, the opponent will likely make different moves
earlier in each playout, thus changing the context. With forget-
ting, the reply only persists if it is also good in this new context.

Both of these effects of forgetting—preserving diversity and
adapting to changing contexts—also explain the very poor per-
formance of the Softmax-1 policy.

In 9 X 9 Go, the addition of forgetting allows the last-good-
reply policies to become beneficial. Still, their effect is much
weaker than on the 19 x 19 board. One possible explanation is
that the locally and tactically oriented heuristics of Orego’s de-
fault policy (capturing, escaping capture, and 3 x 3 patterns) are
more relevant in 9 X 9 than in 19 X 19 Go, making them more
effective than reacting to the opponent’s last move. Another hy-
pothesis is that given a good (often local) reply, the 19 x 19
board allows for a wide variety of positions in which the reply
is useful, because many distant moves do not affect its validity.
On the 9 x 9 board, in contrast, many moves are likely to either
invalidate a reply (because they are nearby) or render it irrele-
vant (because they greatly affect the score).

Our results strongly suggest that the ideal neighborhood of
“similar” states from which to draw information is neither min-
imal (only precisely the current state) nor maximal (all states).
Specifically, two previous moves of context are more effective
than one. It may be that three moves of context would fare even
better, although this would potentially require storing replies for
2 x 361% > 94 million different contexts. Alternately, it may be
that situations where the antepenultimate move is important are
so rare as to be irrelevant.
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