
288 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

Evaluation of Game Tree Search Methods
by Game Records

Shogo Takeuchi, Tomoyuki Kaneko, and Kazunori Yamaguchi

Abstract—This paper presents a method of evaluating game tree
search methods including standard min–max search with heuristic
evaluation functions and Monte Carlo tree search, which recently
achieved drastic improvements in the strength of Computer Go pro-
grams. The basic idea of this paper is to use an averaged win proba-
bility of positions having similar evaluation values. Accuracy mea-
sures of evaluation values with respect to win probabilities can be
used to assess the performance of game tree search methods. A plot
of win probabilities against evaluation values should have consis-
tency and monotonicity if the evaluation values are produced by
a good game tree search method. By inspecting whether the plot
has the properties for some subset of positions, we can detect spe-
cific deficiencies in the game tree search method. We applied our
method to Go, Shogi, and Chess, and by comparing the results with
empirical understanding of the performance of various game tree
search methods and with the results of self-plays, we show that our
method is efficient and effective.

Index Terms—Evaluation function, games, game tree search,
Monte Carlo tree search.

I. INTRODUCTION

T WO approaches are used in game tree searches. One is
game tree search with evaluation functions, and the other

is Monte Carlo tree search. The former has a long history and has
been widely used in Chess and many other games. An evaluation
function with the former approach estimates the quality of a given
position. This estimation is called an evaluation value. A popular
way of constructing an evaluation function is to make it a (linear)
combination of evaluation primitives called features, and adjust
the weights of the combination. However, it is difficult for
computers and humans to find an appropriate set of features.

In the latter approach, recent improvements in methods
involving Monte Carlo tree search [1] have made it possible to
create strong Computer Go programs [2] such as MoGo [3],
CrazyStone [4], and Fuego. Even though the methods have
a sound theoretical background, the effectiveness of many
enhancements such as patterns, rapid action value estimation
(RAVE), and progressive widening, has not been studied yet.
So, we need a method to measure the quality of Monte Carlo
simulation.

The method proposed in this paper can be applied to both ap-
proaches. In order to make our explanation applicable to both

Manuscript received April 15, 2010; revised July 12, 2010; accepted
November 29, 2010. Date of publication December 23, 2010; date of current
version January 19, 2011. This work was supported in part by Grant-in-Aid for
JSPS Fellows 21.10594.

The authors are with the Graduate School of Arts and Sciences, Uni-
versity of Tokyo, Tokyo, Japan (e-mail: takeuchi@graco.c.u-tokyo.ac.jp;
kaneko@graco.c.u-tokyo.ac.jp; yamaguch@graco.c.u-tokyo.ac.jp).

Digital Object Identifier 10.1109/TCIAIG.2010.2102022

of them, we refer to them as game tree searches, which esti-
mate evaluation values of a position irrespective of the method
of estimation throughout this paper. In Monte Carlo simula-
tion, evaluation values are the win probabilities estimated by
the simulation.

In this paper, we propose a novel method for an evaluation
of the accuracy of evaluation values produced by game tree
searches. The basic idea of our method is as follows. We asso-
ciate a position with their win/loss/draw from the game records
or by search. Then, we approximate the win probability of eval-
uation value by the average of wins of the positions having the
evaluation value within some tolerance. Using this relationship
between evaluation values and win probabilities, we can per-
form various assessments of the game tree searches.

We call a plot of win probabilities against evaluation values
an evaluation curve. Evaluation curves of a good game tree
search should have consistency and monotonicity. By visually
inspecting a plot as to whether it has the properties, we can de-
termine whether the game tree search is good or poor. A plot
allows a local inspection such as that the game tree search is
poor when win probabilities are less than 50%. Also, from eval-
uation curves for positions under some condition such as King
is safe or not, we can determine whether the game tree search is
affected by the condition.

By viewing evaluation values as estimates of the win proba-
bilities, we introduce several accuracy metrics. From these met-
rics, we can compare game tree searches numerically.

We confirmed that evaluation curves and the accuracy metrics
are useful by numerous experiments on Go, Chess, Othello, and
Shogi.

This paper is structured as follows. First, related work is re-
viewed in Section II. Then, our method of evaluating game tree
search is presented in Section III, followed by experimental re-
sults in Section IV. How we applied our method to new games
is discussed in Section V. Finally, conclusions and future work
are discussed in Section VI.

II. RELATED WORK

A. Accuracy of Game Tree Search

The accuracy of heuristic search is usually measured indi-
rectly by comparing two programs with self-play. The problem
with this method is that it is very time consuming to get statis-
tically significant results.

If more information is available, we can directly evaluate
evaluation values. For example, if theoretically correct evalu-
ation values are available in a database or are found by an ex-
haustive search, the errors in evaluation values can be directly
calculated. Examples are endgames in Othello [5] and Awari [6].

1943-068X/$26.00 © 2010 IEEE

TAKEUCHI et al.: EVALUATION OF GAME TREE SEARCH METHODS BY GAME RECORDS 289

However, the domains where such information is available are
limited. For another example, if the preference of human players
is available, we can evaluate game tree search methods from
how an evaluation value for each position agrees on the prefer-
ence of human players [7]. The applicability of this method is
limited to domains in which such a preference is available. Our
method does not require such a preference.

B. Learning of Evaluation Functions

The purpose of the evaluation of evaluation functions is to
improve evaluation functions. In this sense, research on evalua-
tion of evaluation functions is related to research on learning of
evaluation functions.

Much research has been devoted to the learning of evaluation
functions in game programming since Samuel’s seminal work
on Checkers [8]. Supervised learning can be effectively used
to adjust weights, when appropriately labeled training positions
are available. Supervised learning in Othello produced one of
the strongest programs available then [9]. However, no evalua-
tion functions have successfully been trained in Chess and Shogi
by directly applying supervised learning due to the difficulty of
obtaining labeled positions.

There is a method based on the correlation of preferences for
positions in Chess [10]. However, this requires many positions
to be assessed by grandmasters to determine which of the two
positions are preferred. Thus, its application is limited to do-
mains in which such assessments can be carried out. Our method
requires no positions to be labeled.

Temporal difference learning is another approach to adjust
weights. It was successful with Backgammon [11]. Learning
variants have also been applied to Chess [12]. However, tem-
poral difference learning has not been adopted in top-level
programs for deterministic games. This method involves much
computational cost because it has to update weights by playing
numerous games. Our method requires no need for plays and is
computationally efficient.

C. Monte Carlo Tree Search

In imperfect-information games including Bridge [13],
Scrabble [14], and Poker [15], sampling-based approaches have
been widely used. Abramson [16] presented a method of using
random sampling for evaluation. Applying the Monte Carlo
method to Go was first introduced by Brügmann [17], and was
later studied by Bouzy and Helmstetter [18]. Monte Carlo Go
utilizes the results of random sampling in evaluating positions,
instead of hand-coded evaluation functions of heuristic search.

In the classical model, it performs a one-ply search and com-
putes an “expected score” for each node. In a random game,
each player almost randomly plays a legal move, except for
one filling in an eye point of that player,1 until a position is
reached where neither player has an effective move. We call
these random games playouts. A fixed number of playouts is
played at each leaf. The law of diminishing returns with addi-
tional playouts has been confirmed for this classical model [19].
The expected score of a position is defined as the average of
the final scores in the terminal positions of all random games

1Filling one’s eye is an extremely bad move in Go.

starting from that position. It then selects the move with the
highest score.

Many enhancements have been proposed to this classical
model. In some enhancements, the win probability is used as
the expected score of a position instead of the average of the
final scores as used in the classical model. We will elaborate
on this enhancement later.

Currently, the most effective enhancement in recent programs
is the recursive extension of nodes and intensive playouts on
effective moves [20], [1].

A Monte Carlo method combined with tree search is called a
Monte Carlo tree search in general. Upper confidence bounds
applied to trees (UCT) [1] is a popular Monte Carlo tree search
method. It is based on the theory of the multiarmed bandit
problem. In a UCT tree, Monte Carlo simulation is conducted
at leaves. UCT recursively extends the most effective node
in a best-first manner where the effectiveness of a node is
estimated by the win probability and exploration term of the
node. There are some variations in the use of variance in UCT
[21], [22], from which we explain UCB1 and UCB1-tuned in
the following.

Let be the win probability in playouts undertaken for
the th move at node , and let be the total playouts carried
out at the descendants of node . UCB1 extends move , which
maximizes

(1)

UCB1-tuned is an improved version of UCB1. UCB1-tuned ex-
tends move , which maximizes

(2)

State-of-the-art programs are enhanced by many heuristics
such as patterns or progressive pruning to obtain more reli-
able results. Patterns can be statically obtained by analyzing
game records [23] or dynamically analyzing games during play
[24]. The relationship between the strength of programs and the
quality of patterns used to select moves in playouts has been
reported to be unclear [25], where quality means the accuracy
with which moves are predicted in game records.

It should be noted that the accuracy of the win probability es-
timated by the Monte Carlo simulation, where accuracy is with
respect to the win probability in actual game playing, has not
yet been assessed, except for our preliminary work [26].

III. OUR METHODS

We first introduce a method to approximate the win proba-
bility for evaluation values from game records in Section III-A.
Then, we introduce classification performance metrics ap-
plied to the estimation of win/loss by evaluation values in
Section III-B. A plot of the relationship called evaluation
curves is introduced in Section III-C. Then, accuracy metrics
on evaluation values over the win probabilities are introduced in
Section III-D. Finally, the expected value of win is introduced
in Section III-E.

290 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

A. Win Probability in Game Records

The key to our evaluation of game tree search methods is the
relationship between win probabilities and evaluation values.
For Monte Carlo tree search, this is the comparison between the
simulated win probability and the win probability from the game
records. In our framework, the former is called an evaluation
value, and the latter a win probability. Now, assume that there
are numerous game records that contain positions. We define
the win probability as a function of evaluation value and as

win probability (3)

where

winner is the black player

winner is the white player (4)

Here, is a position in and is a nonnegative tolerance of
evaluation values. To compute this win probability, we first com-
pute the evaluation value for each position in the game records.
We also determine the winner of all positions. Because it is usu-
ally difficult to determine the theoretical winner of a position,
we used that of a game record as the winner of all positions
that appeared in the record if the exhaustive search cannot de-
termine the winner. This worked sufficiently well in our experi-
ment. Finally, we aggregate the numbers of wins and losses

for each interval , and calculate
the fraction using (3). This calculation was first proposed in our
previous paper [27] for assessing heuristic evaluation functions,
where we used the value of evaluation functions as in
(4). For Monte Carlo tree search method, we use the results of
the Monte Carlo simulations as .

B. Application of Classification Performance Metrics

As a measure of performance of game tree search, we employ
performance metrics widely used in supervised learning. Here,
we view a search method as a classifier that divides positions
into win and loss, and the classified results are measured on
game records.

From the nine metrics discussed by Caruana and Niculescu-
Mizil [28], we selected six metrics having the compatible output
range with the game tree search. It is because the rest of the met-
rics are not suitable for analyzing some search methods, such as
Monte Carlo score and heuristic evaluation functions. First, let
us introduce some basic definitions that will be used later. Let
be the theoretical win/loss represented by 1/0 for a position .
Let be a value produced by the classifier. is in if it is
an estimated win probability produced by recent Monte Carlo
search methods, and is in if it is produced by clas-
sical Monte Carlo searches or heuristic evaluation functions. To
obtain binary output from , we set a threshold , for each
classifier, and calculate as .
For in , 0.5 is used as . Let TP denote true positives, FP
denote false positives, TN denote true negatives, and FN denote
false negatives. They are the sets: TP
FP TN , and FN

. Then, precision and recall are defined
as follows:

precision
TP

TP FP
recall

TP
TP FN

Precision is a fraction of true positives over classified positives,
and recall is a fraction of classified positives over true positives
and false negatives. There is usually a tradeoff between preci-
sion and recall.

Now, let us introduce the six metrics.
1) Accuracy (ACC): Accuracy is defined as

TP TN
total

Total is the set of all records. The accuracy ranges from 1.0
to 0.5 by negating output if necessary.

2) F-score (FSC): F-score is defined as

precision recall

F-score ranges from 1.0 to 0.
3) Lift (LFT): Lift is a fraction of true positives in the top %

of samples ordered by their s. Formally, lift is defined as

TP in the top % samples
top % samples

We used % 25% as in [28].
4) Area under ROC curve (ROC): ROC curve is a plot of

the fraction of true positives along the vertical axis and
that of false positives along the horizontal axis for various
threshold . The area under the ROC curve ranges from 1.0
to 0.5 by negating output if necessary. See [29] for details.

5) Average precision (APR): Average precision is the
averaged precisions for thresholds whose recalls are

.
6) Precision/recall break even point (BEP): BEP is the preci-

sion for the threshold whose precision is equal to recall.
It should be noted that these metrics are sensitive to test cases

(positions, in our case). For example, consider a program that al-
ways returns 1 (win) for all positions. Its accuracy is 1.0 if sam-
ples are all positives and 0.0 if these are all negatives. Thus, the
metrics over different test cases should be carefully compared.
Evaluation curves, which will be introduced in Section III-C,
for different sets of positions, are useful for detecting this kind
of problem.

C. Evaluation Curves

The relationship between the win probabilities and evalu-
ation values can be visualized by plotting it with evaluation
values along the horizontal axis and the win probabilities along
the vertical as shown in Fig. 1. We call this curve an evalua-
tion curve. The evaluation curves of good game tree searches
must be monotonically increasing. So, monotonicity is required.
However, actual evaluation curves are not always monotonically
increasing.

The monotonicity is not sufficient to ensure that the game tree
search method is sound. Suppose that we have evaluation curves

TAKEUCHI et al.: EVALUATION OF GAME TREE SEARCH METHODS BY GAME RECORDS 291

Fig. 1. Example of poor game tree search.

for all positions and only for positions satisfying a certain con-
dition as shown in Fig. 1. For the position having the evalua-
tion value at and position having the evaluation value at ,
the game tree search estimates better than , while has a
larger win probability. As demonstrated by this example, evalu-
ation curves for positions satisfying different conditions should
overlap. If they do, we call the evaluation curve consistent. We
call an evaluation curve for all the positions a total curve, and an
evaluation curve for positions satisfying some condition a con-
ditioned curve. If a total curve and a conditioned curve do not
overlap, we say that they split. How well the evaluation method
is working for some conditions can be observed by how they
split.

D. Kendall’s Rank Correlation Coefficient

We employ Kendall’s as a measure of correlation of win
probabilities and evaluation values. Kendall’s is a measure of
rank correlation defined as follows:

where is the number of pairs of the same order2 in both ranks,
and is the number of pairs of the different order. In mea-
suring the correlation of win probabilities and evaluation values,

is the number of position pairs whose orders of evaluation
values and win probabilities agree, and is that of position
pairs whose orders disagree. If the orders of evaluation values
and win probabilities completely agree, , and if the orders
of them completely disagree, .

E. Expected Value of Values

In game tree search, we can prune unimportant moves, if an
evaluation value of a move is sufficiently smaller than that of the
best move. So, it is desirable that the variance of evaluation value
be large, but the variance of evaluation values is not considered
in the monotonicity and consistency discussed in Section III-C.
We need another metric to assess the variance.

We also need to assess the reliability of evaluation curve. If
evaluation values concentrate on the center around 0.0 (in eval-
uation functions) or 0.5 (in Monte Carlo tree search methods),
there are only a few positions at either end of the evaluation
curve. This reduces the reliability of the evaluation curve. So,
we need a metric to assess the reliability of evaluation curves.

For these purposes, we use an expected value of evaluation
values as a metric. Let be the evaluation value for position ,

2A pair whose evaluation value or win probability ties is counted in � in our
experiment for simplicity.

and be win/loss represented by 1/0. For an ideal evaluation
function, for (win), and for (loss).
Then, we calculate the expected value of for as

Similarly, we calculate it for as

We use the difference of them as the metric defined by

It is desirable that be large because the variance of evalu-
ation values is large then. Note that and are available from
the data used in Sections III-C and III-D, and can be ob-
tained with no extra cost.

IV. EXPERIMENTAL RESULTS

In this section, we first show the results of experiments with
Monte Carlo tree search methods. Then, we also show that our
methods were successfully applied to the analysis of evaluation
functions for min–max search methods.

A. Evaluation of Monte Carlo Tree Search Methods in Go

Let us first explain the game programs and records we used
in our experiments. We used the following four Monte Carlo
search methods and GnuGo.

• Fuego: We used Fuego3 version 0.4.1 as an enhanced UCT
program with various enhancements including patterns.
Fuego is a strong program with a rating of about 2500 in
the 9 9 version of Internet Go server (CGOS).4 Evalua-
tion was carried out by using the “genmove” gtp command
and we used the win probability of the best move.

• UCT: We used the implementation in libego (version
0.116, on August 1, 2008)5 as a plain UCT program. Its
rating is about 1800 in CGOS (9 9, on August 1, 2008).
The win probability of the best move was used for the
evaluation value of a position, as in the experiments with
Fuego.

• MC: We also used the Monte Carlo component of libego to
measure the quality of simulations played at the leaves in
UCT. The win probability of the root node was used as its
evaluation value since that of the best move was not avail-
able. To enable a fair comparison with UCT, the number of
playouts was adjusted to the given threshold divided by the
number of legal moves. This was because almost the same
number of playouts was undertaken for each legal move in
MC.

• MC-Score: MC-Score was a modified version of MC,
which computed the averaged leaf scores instead of the
win probability. The reason MC-Score was used is to

3http://fuego.sourceforge.net/
4http://cgos.boardspace.net/9x9/
5http://github.com/lukaszlew/libego

292 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

Fig. 2. Evaluation curves for (a) Fuego, (b) UCT, and (c) MC.

assess the quality of simulations in the classical model
explained in Section II-C.

• GnuGo: We used GnuGo6 (version 3.7.12, on August 1,
2008) as a traditional program. The evaluation values of the
root node and that of the best move are identical in GnuGo.

All programs were run with the Chinese counting rule because
some did not support the Japanese counting.

We used records played on a 9 9 board at the Kiseido Go
Server (KGS) for game records. We obtained the records for
games played from 2001 to 2005. The records collected were
under various conditions of komi, players’ rating, and handicap.
We mainly used the records under the condition of komi 0.5, a
rating that is over 3 k, and no handicap, because most records
were played in this configuration, as summarized in Table VII.
We also analyzed and discussed other configurations.

There were 2000 records that include 111 946 positions. In
our experiments, Monte Carlo simulations took the most of the
time and our analysis took only a few minutes. The run time of
simulations depends on the number of games and the number
of playouts. For Fuego with 50 000 playouts (the most time-
consuming experiment), it took a day. These experiments were
performed on an Intel Xeon 3.0-GHz processor.

Here, we will present the evaluation curves for all programs.
The vertical axis of an evaluation curve indicates the win prob-
ability for the black player computed from game records. The
horizontal axis indicates evaluation values, which are the esti-
mated scores for MC-Score and GnuGo and the win probability
estimated by simulation for the other programs. We omitted in-
tervals that consisted of fewer than 100 positions from all eval-
uation curves.

Fig. 2(a) plots the evaluation curves for Fuego. The curves are
very close to the line, . This means that Fuego performed
very well in predicting the probability of human players’ win

6http://www.gnu.org/software/gnugo/gnugo.html

Fig. 3. Evaluation curves for MC-Score and GnuGo.

in the game records. A deviation at both ends (or
) appears in almost all other evaluation curves and the

reason will be discussed in Section V-A2.
Fig. 2(b) and (c) plots the evaluation curves for UCT and MC

with various numbers of playouts. In both evaluation curves, the
curves for 500 playouts plotted with “ ” are different from the
other curves, while the evaluation curves for 5000 and 50 000
playouts are similar. Note that the win probability obtained from
records will differ even when positions have the same estimated
win probability in simulations if the number of playouts varies.
We may reduce these differences by adding an adjusting term
to (1) and (2). This would be an interesting topic for further
research.

Fig. 3 plots evaluation curves for MC-Score and GnuGo. The
horizontal axis of this evaluation curve is for the score in the
range of . Surprisingly, the curves for MC-Score are
almost the same for all sample sizes. This might be the effect of
diminishing of returns reported by Yoshimoto et al. [19]. The
curve for GnuGo is not monotonously increasing. This suggests
that the evaluation of GnuGo is different from the win proba-
bility calculated from the human players’ records.

TAKEUCHI et al.: EVALUATION OF GAME TREE SEARCH METHODS BY GAME RECORDS 293

TABLE I
PERFORMANCE OF EVALUATION METHODS

Let us now present the performance metrics in Table I, which
were described in Section II-B. First, let us discuss the results
on the accuracy (ACC) metric. Here, we can assume that the
accuracy ranged from 1.0 to 0.5, because if accuracy is below
0.5, we can obtain a better result by negating the estimates. We
can see from the table that UCT, MC, and MC-Score with a
larger number of playouts achieved better accuracy and GnuGo
with higher levels achieved better accuracy. This is consistent
with our observation that programs with larger numbers of
playouts or in higher levels are stronger. Fuego was the best
program followed by GnuGo, UCT, MC, and MC-Score with
respect to the accuracy metric. This order is consistent with our
empirical assessment of the strengths of these programs. The
results of ROC, APR, and BEP were similar to that of ACC.
The results of LFT and FSC were also similar. However, it is
unnatural that FSC for UCT and LFT for Fuego were reverse
orders, and in FSC for MC-Score, 5000 playouts was the best
result. FSC and LFT are not recommended from the results of
this experiment.

We calculated the expected value of evaluation values. The
results are summarized in Table II. We can see that programs
with a larger number of playouts or in higher level achieved
larger expected value. When the number of playouts is fixed,
Fuego achieved the largest expected value, and UCT achieved
the second largest one. These results seemed plausible.

The evaluation value of Fuego, UCT, and MC ranges from 0
to 1, and that of MC-Score and GnuGo ranges from 81 to 81.
We cannot compare the expected value of the former with that
of the latter because the range of the expected value depends on
the range of the evaluation value.

TABLE II
KENDALL’S � AND EXPECTED VALUE OF EVALUATION VALUE: GO

We examined the evaluation curves for various sets of posi-
tions to find what caused the differences in Table I. Here, we
focused on the move numbers of positions. Fig. 4 plots evalu-
ation curves for Fuego. In the figure, “ ” is for positions with
less than 20 moves, and “ ” is for positions whose move num-
bers are in , and so on. We can see that the evaluation
curves in Fuego almost fit into one curve meaning that its eval-
uation is consistent throughout the progress of the game.

Fig. 5 plots the evaluation curves for MC and UCT for sets
of varying move numbers. We can see that the curves vary de-
pending on the progress of the game and the number of play-
outs. The curves for 500 playouts in the opening positions espe-
cially show that MC and UCT are not useful for estimating the
win probability calculated from human players’ records. This
suggests that we should handle the estimates of shallower and
deeper nodes differently for these programs.

Fig. 6 plots the evaluation curves for GnuGo. The curves split
significantly depending on the progress of the game.

It is empirically known that programs based on Monte Carlo
methods tend to play bad moves in tactical positions, where they
need to search relatively long sequences to play good moves.
Here, we discuss our examination of this empirical fact by using
our method. First, we selected 12 388 positions in which some
stones could be captured by a ladder (simple capturing race).
Fig. 8 plots evaluation curves for UCT and MC for these posi-
tions. In the figure, “ ladder ” means that there are black
stones to be captured if the white player attacks by using a
ladder, and “ ladder ” means the same for a black player. In
the figure, we can see that a split exists in the evaluation curves
especially for UCT and MC in the small number of playouts,

294 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

Fig. 4. Fuego with various move numbers: (a) 500 playouts, (b) 5000 playouts, and (c) 50 000 playouts.

Fig. 5. UCT and MC with various move numbers: (top) UCT and (bottom) MC. (Left) 500 playouts. (Center) 5000 playouts. (Right) 50 000 playouts.

Fig. 6. Gnu Go (level 0) with various move numbers.

which confirms the empirical fact. Fig. 7 plots evaluation curves
for the same positions in Fuego. The curves almost fit into one
where . Therefore, we can see that this deficiency in
UCT and MC is remedied in Fuego.

For split evaluation curves, if there is a white (black) stone to
be captured, the win probability of the black player computed
by game records tends to be higher (lower) than that obtained
by simulation. This result is consistent with a widely accepted
observation that such stones may not be captured in Monte Carlo
simulations.

It is said that the Monte Carlo tree search methods work
poorly at complex positions such as tactical positions than other
positions. The Monte Carlo tree search methods, which make
only a depth-one search, failed to evaluate positions correctly
because deep search is required in order to get a good move at
tactical positions. In our experiment, we selected 2218 tactical
positions involving Ko. Evaluation curves of Fuego, UCT, MC,
MC-Score, and GnuGo are shown in Figs. 9 and 10. The evalu-
ation curves of these programs split and they fail to handle tac-
tical positions of Ko. This agrees on the aforementioned exper-
imental knowledge. The evaluation curve of Fuego splits only
in the range that an evaluation value and relatively better.

TAKEUCHI et al.: EVALUATION OF GAME TREE SEARCH METHODS BY GAME RECORDS 295

Fig. 7. Fuego at ladder positions: (a) 500 playouts; (b) 5000 playouts; and (c) 50 000 playouts.

Fig. 8. UCT and MC at ladder positions: (top) UCT and (bottom) MC. (Left) 500 playouts. (Center) 5000 playouts. (Right) 50 000 playouts.

This observation agrees on the fact that Fuego is the strongest
of them. The evaluation curve of MC-Score is poorer especially
when the number of playouts is small.

B. Evaluation of Evaluation Functions

Here, we show the analysis of evaluation functions in Chess
and in Shogi. Since parameters in evaluation functions have a
direct effect on the results of position evaluation, we also show
how our methods visualize the improvements of the parameters
in evaluation functions.

1) Chess: We worked with Crafty7 (version 20.14, on
November 29, 2006). We used 45 955 records made available
by the International Correspondence Chess Federation (ICCF8)

7ftp://ftp.cis.uab.edu/pub/hyatt/
8http://www.iccf.com/content/index.php

as the game records. Those games were played from 1988 to
2006. It took a few hours to obtain evaluation values on an
AMD Opteron 2.2-GHz processor.

a) Draw: In Chess, games often end in draws. In order to
see how draws affect evaluation curves, we plot the evaluation
curve using draws as 0.5 win. Fig. 12 shows that draws have
little effect on evaluation curves. So, we did not use records of
draws in our experiments in order to avoid complications with
determining the win probability.

b) Quiescence Search: Most programs in various games
including Chess use quiescence searches because evaluation
values are unreliable for tactical positions. We used evaluation
values as in game tree searches for the leaves of principal vari-
ations obtained by a quiescence search to draw the evaluation
curve labeled “with QS” in Fig. 11. Also, we used evaluation
values without a quiescence search to draw the evaluation

296 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

Fig. 9. Fuego, UCT, and MC at Ko positions: (top) Fuego, (middle) UCT, and (bottom) MC. (Left) 500 playouts. (Center) 5000 playouts. (Right) 50 000 playouts.

Fig. 10. MC-Score and GnuGo at Ko positions: (top) MC-Score and (bottom) GnuGo. (Left) 500 playouts/level 0. (Center) 5 000 playouts/level 2. (Right) 50 000
playouts/level 4.

curve labeled “without QS” in Fig. 11. The curves with a
quiescence search are monotonously increasing; on the other

hand, the curves without a quiescence search are, surprisingly,
not monotonously increasing.

TAKEUCHI et al.: EVALUATION OF GAME TREE SEARCH METHODS BY GAME RECORDS 297

Fig. 11. Evaluation curves: Chess with/without quiescence search.

Fig. 12. Evaluation curve: Chess, with/without draw.

A comparison of both evaluation curves suggests that these
fluctuations are caused by unreliable evaluations of tactical
positions.

c) Bishop Evaluation: Here, we present an experiment on
new features in Chess. Because we did not think of new features
to add to Crafty, we simulated the addition of new features by
disabling some existing features and then adding the existing
features. Fig. 13 plots the evaluation curves for the feature of
“Bishop Evaluation” (BE), which evaluates the mobility and de-
velopment of Bishops. In the three evaluation curves, the broken
(dotted) curve is an evaluation curve for the positions whose BE
is more (less) than or equal to 50. The evaluation curve on the
right is for the original evaluation function of Crafty, and the
evaluation curve on the left is for a modified one whose BE was
turned off. We can see that the conditioned curves differ from the
total curve in the evaluation curve on the left. We then adjusted
the weights of BE with MLM and LS, details of which are ex-
plained in the Appendix. The center evaluation curve in Fig. 13
plots the curves for the evaluation function adjusted by LS. We
can see that the conditioned curves in the evaluation curve are
much closer to the total curve. Table IV summarizes the weights
relative to those of the original Crafty adjusted by MLM and LS.

We conducted 1000 self-plays between programs before ad-
justment, two programs after adjustment, and the original Crafty
to find whether there were any improvements. Each player was
given 10 min per game. The results are summarized in Table III.
The programs after adjustment (MLM and LS) had more wins
than those before adjustment (turned off) and they were statisti-
cally significant with a significance level9 of 5%. Therefore ad-
justments done by our method effectively improved the evalua-

9These were measured with a program written by Amir Ban that took
draws into account (http://groups.google.com/group/rec.games.chess.com-
puter/msg/764b0af34a9b4023, posted to rec.games.chess.computer).

TABLE III
RESULTS FOR SELF-PLAY IN CHESS (WINS–LOSSES–DRAWS)

TABLE IV
RESULTS OF ADJUSTING WEIGHTS IN CHESS

tion functions. The original program had more wins than those
after adjustment (MLM and LS).

2) Shogi: We used GPS Shogi (rev. 1117 with Open Shogi
Library rev. 2602, on September 20, 2006),10 which took eighth
place at the World Computer Shogi Championship in 2005, a
winner in 2009, and third place in 2010. We used 90 000 records
from the Shogi Club 24 [30] in order. We employed a checkmate
search for Shogi in up to 10 000 nodes for each position, from
the first position to the last in a record to determine the winner of
each record. If a checkmate was found, the player for the posi-
tion was determined to have won. It took several hours to obtain
evaluation values with checkmate search on an AMD Opteron
2.2-GHz processor.

In our previous work [27], we observed that evaluation
curves with and without quiescence search are quite similar.
Thus, we plot evaluation curve without quiescence search in
this experiment.

a) Progress bonus [King Unsafety (KU)]: We introduced
a new evaluation feature to Shogi, the difference in the “King’s
Unsafety” (KU) for both players.

The conditioned curves of the evaluation function in GPS
Shogi differ from the total curve as shown in Fig. 14, when
there is a large difference between the KUs of both players. We
therefore prepared a new evaluation function and adjusted its
weights with our methods. GPS Shogi originally had two kinds
of evaluation functions. The first one was for the opening
and for evaluating the material balance, as well as the combi-
nation of pieces to take the development of pieces into account.
The second one was for the endgame and for evaluating the
relative positions of the Kings and the other pieces. They were
combined by a progress rate pr whose range was

(5)

We then designed a new evaluation function that incorporated
two new features, i.e., and

(6)

where represents the difference in KUs measured using at-
tacking pieces and represents the difference measured using
the defending pieces. Here, the differences are multiplied by

10http://gps.tanaka.ecc.u-tokyo.ac.jp/{gpsshogi,osl}

298 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

Fig. 13. Evaluation curve in Chess: (a) without Bishop Evaluation; (b) adjusted by LS; and (c) original Crafty.

Fig. 14. Evaluation curves: Shogi without quiescence search, difference in
KUs.

Fig. 15. Evaluation curve in Shogi (difference in KUs, adjusted by MLM).

the rate of progress in because it is empirically known
that such differences are of more importance near the endgame.
When weights and are 0, (6) reduces to (5).

Table VI compares the weights adjusted by MLM as well
as those manually adjusted. We can see that they have similar
values. The evaluation curves after adjusting them with MLM are
plotted in Fig. 15. (We have omitted manually adjusted curves
because they are very similar to those in Fig. 15.) The conditioned
curves are much closer to the total curves than those in Fig. 14.

TABLE V
RESULTS FOR SELF-PLAY IN SHOGI (WINS–LOSSES–DRAWS)

TABLE VI
RESULTS OF ADJUSTING WEIGHTS IN SHOGI

We conducted 1000 self-plays between programs before ad-
justment and two programs adjusted by MLM and manually to
find whether there were any improvements. We used positions
after 30 moves in the professional game records as the initial
positions for self-play. Each player was given 10 min per game.
The results are summarized in Table V. The program with the
new evaluation function (MLM) had more wins against the orig-
inal program (original), and it was statistically significant with
a significance level of 5% in a binomial test. The adjustments
based on our method therefore effectively improved evaluation
functions. There were no statistically significant differences be-
tween adjustments done by MLM and those done manually.

V. APPLYING TO NEW GAMES

As shown in the experimental results, the presented methods
worked robustly in many cases in different games and also in
different search methods. Thus, we expect that the presented
methods will be effective in other games. This section discusses
practical issues to be considered when one applies our methods
to new games.

TAKEUCHI et al.: EVALUATION OF GAME TREE SEARCH METHODS BY GAME RECORDS 299

Fig. 16. Evaluation curves in Shogi: (a) amateur records versus professional records; (b) before adjustment (professional); and (c) after adjustment (professional).

A. Game Record Selection

Here, we explain how we prepare game records. We explain
about player strength and other issues such as rule, handicap,
and so on.

1) Player Strength: Since our methods use the wins and
losses of game records, we need an assumption that the records
were played by players with reasonable strength. Intuitively, if
records were played by random players, we cannot extract any
information from the number of wins and losses.

In order to see the dependency on the strength of players,
we conducted additional experiments with another set of game
records. In the additional experiments, the similar results were
observed when a different set of game records were used as
explained below.

We conducted additional experiments with professional game
records. We used 603 records from the 59th Junisen, a profes-
sional championship tournament in Shogi. Fig. 16(a) plots the
total evaluation curves for the professional records, as well as
those for amateur records (Shogi Club 24). Because there were
an insufficient number of professional records, we used intervals
consisting of more than 100 positions and added error bars for
the confidence interval of 5%. We can see that the probability of
wins for the professional records increases more gradually than
that for the amateur records. This suggests that difficult positions
appear more often in professional game records for computers.

Fig.16(b)plots theevaluationcurvesfor theoriginalevaluation
function. Although the curves are not as clearly sigmoid due to
the limited number of the records, we can see that the conditioned
curves differ from the total curve in the professional records, as
well as in the amateur records (Fig. 14). Fig. 16(c) plots the eval-
uation curves for the new evaluation function adjusted by MLM
in theprevioussection.Theconditionedcurvesaremuchcloser to
the total curves for the professional records, even though the eval-
uation function was adjusted using the amateur records. Evalua-

TABLE VII
THE NUMBER OF GAME RECORDS IN 9� 9 GO

tion functions adjusted by using amateur records are thus also
expected to be effective in professional records.

We conducted an experiment to see the effect of strength in
game records by the ratings of the records for Go. Table VII
shows 2000 games from Go play server KGS for different rat-
ings, komi, rules, and win/loss in 9 9 Go. In rate, (dan) is
stronger than (kyu). Dan and kyu are associated with number.
For dan, the larger number means stronger. The number ranges
from 1 to 9. For kyu, the smaller number means stronger. The
number ranges from 1 to 40. In the following, rate means
that at least one of the players has the strength between dan and
6 kyu. Fig. 17 shows the evaluation curves for games with rate

and those with rate , and Fig. 18 shows the
evaluation curves for games with rate and those with
rate for different komi. These evaluation curves are
almost similar meaning that the rate of the games does not af-
fect the result much.

At these evaluation curves win probability is lower than
. This is probably because the player with higher ratings plays

the second in KGS.
2) Other Issues: Here, we explain other issues of preparing

game records. The issues are rule, komi, both ends in evaluation
curves, and draw.

300 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

Fig. 17. Evaluation curve of Fuego, komi 6.5: (a) A ��� ���; (b) B ���� ����.

Fig. 18. Evaluation curve of Fuego, komi 0.5: (a) C ��� ���; (b) D ���� ����.

Fig. 19. Evaluation curves of Fuego (KGS, ���, komi 6.5).

For Go, there are slight variations in the games rules. There
are the Chinese and Japanese rules. Also, there is difference in
komi such as 6.5 and 7.5, and sometimes 0.5 for lower ratings.
As shown in Figs. 17–19, rule and komi do not affect the result
much.

At both ends (or) of evaluation curves in
Go such as Figs. 17–19, the win probabilities fluctuate signif-

icantly. This occurs when the winner of the game records and
that determined by the program differ. One possible explana-
tion is that the program correctly determines the winner while
humans fail to find the win. For UCT and MC (Fig. 2), which
are weaker than Fuego, there is not much fluctuation supporting
this speculation.

As explained in Section IV-B1, records of draws can be
discarded.

B. Selection

In order to calculate win probability from game records, we
have to determine in (4). For smaller , the win probability is
calculated from a small number of positions and the resolution
of the win probability is lower. For larger , the resolution of
evaluation value is lower. So, to strike a balance is important.

The resolution of the win probability calculated from po-
sitions is estimated as follows. Suppose that there is “true” win
probability and we estimate it from samples. The error from

and estimated has the variance of and the standard
deviation . Because each position results in win

TAKEUCHI et al.: EVALUATION OF GAME TREE SEARCH METHODS BY GAME RECORDS 301

or loss , the variance
. In the experiment in Section IV, we

easily collected the game records with 10% error in the win
probability and 5% error in evaluation value, which are suffi-
cient for producing useful evaluation curves. For example, in
Chess, 1 872 381 positions were available. See the evaluation
curve labeled “all” in Fig. 11. At evaluation value with

50 (2.5%), for resulting in
. At evaluation value with 50 (2.5%),

for resulting in . In this
case, if necessary, we may adaptively reduce around evalua-
tion value without much worsening the resolution in the
win probability because the number of positions in the range is
large.

In Section IV-A, we showed that Monte Carlo tree search per-
forms better near the end of games in Go. These phenomena
are observed in other games also. Thus, the numeric measures
tend to be better for the game records that contain fewer early
positions. In general, positions satisfying a given condition do
not contain early, middle, and late positions uniformly. So, the
comparison of numeric measures for positions for different con-
ditions may favor the one with more late positions. In order to
avoid this bias, care must be taken to normalize the distribution
of early, middle, and late positions.

C. Method Selection

We proposed evaluation methods to use the relationship be-
tween the win probabilities and evaluation curves in Section III
and they are used to reveal various facts in Section IV. Here, we
summarize from their purposes.

Evaluation curve is a useful method to find missing features,
such as Ladder (Fig. 8), Ko (Fig. 9), Bishop Evaluation (Fig. 13),
and King Unsafety (Fig. 14). However, it is difficult to determine
which number of playouts is stronger (Fig. 2).

On the other hand, numeric measures are useful to see the
effect of playouts (Tables I and II). However, it is hard to find
missing features. For example, ACC for UCT with 5000 play-
outs is 0.608 at all positions and 0.763 at Ko positions. This
result is contrary to the empirical fact that the Monte Carlo tree
search methods work more poorly at tactical positions than other
positions. This phenomenon was explained in Section V-B.

VI. CONCLUDING REMARKS

We presented a means of measuring the performance of
methods involving Monte Carlo tree search by using the re-
lationship between evaluation value and win probability. By
plotting evaluation curves for Monte Carlo tree search methods,
we could see they had various characteristics. If the curve
differed from the line, then the win probability estimated
by the simulations was poor. By plotting the curves for various
search methods, we could see which methods were better
than others. By plotting the curves for various numbers of
playouts, we could assess what effect the numbers of playouts
had. By plotting the curves for various phases of progress
in the games, we could see how effective the simulations
were at various stages of the game. By plotting the curves for
positions with/without certain conditions, we could see how
the conditions affected the effectiveness of the simulations.

We demonstrated, by an example, that many methods involve
difficulties in evaluating positions with stones in threats of a
ladder proving the experience that Monte Carlo programs are
relatively weak in such strategic positions.

We also introduced numerical metrics ACC, FSC, LFT, ROC,
PRS, and BEP to evaluate the performance of search methods
using game records. Our experiments revealed that ACC is quite
close to our empirical understanding of the performance of var-
ious search methods. We can automatically compare various
methods by using such metrics.

Utilizing these metrics to make strong programs is a fasci-
nating topic of research. The first step toward this direction is to
measure and compare the performance of individual enhance-
ments in UCT such as RAVE and patterns. Once split curves are
found in Monte Carlo tree search methods, developing enhance-
ments to remedy problems is the next step. We can expect this
remedy to improve search methods because Chess and Shogi
programs become stronger by modifying evaluation functions
to reduce the split in evaluation curves [27].

APPENDIX

MLM and LS

Here, we explain MLM and LS for weight adjustment.
Because evaluation curves form a sigmoid as has been

confirmed by numerous experiments that were discussed in
Section IV, it is acceptable to use logistic regression that maxi-
mizes the likelihood of training examples (denoted as MLM).
Let be the win probability of a position approximated by
the sigmoid transformation of

The likelihood in MLM for a training position is defined as

likelihood

where denotes the winner of the th training position whose
value is 1 (0) if the winner is the black (white) player. Finally,
weights are determined so that the product of the likelihood
of each position is maximized

likelihood

As an alternative, weights can be determined with least
squares (LS) by minimizing the summation of the squared
errors between and

ACKNOWLEDGMENT

The authors would like to thank the referees for their helpful
comments.

REFERENCES

[1] L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo planning,” in
Machine Learning: ECML 2006. Berlin, Germany: Springer-Verlag,
2006, vol. 4212, pp. 282–293.

302 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

[2] M. Müller, “Computer Go,” Artif. Intell., vol. 134, no. 1–2, pp.
145–179, Jan. 2002.

[3] S. Gelly and D. Silver, “Achieving master level play in 9� 9 Computer
Go,” in Proc. 23rd AAAI Conf. Artif. Intell., 2008, pp. 1537–1540.

[4] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Proc. Comput. Games, 2006, pp. 72–83.

[5] M. Buro, “Improving heuristic mini-max search by supervised
learning,” Artif. Intell., vol. 134, no. 1-2, pp. 85–99, Jan. 2002.

[6] J. van Rijswijck, “Learning from perfection: A data mining approach
to evaluation function learning in awari,” in Computer and Games,
ser. Lecture Notes in Computer Science, T. A. Marsland and I. Frank,
Eds. Berlin, Germany: Springer-Verlag, Oct. 2001, pp. 115–132, no.
2063.

[7] D. Gomboc, M. Buro, and T. A. Marsland, “Tuning evaluation func-
tions by maximizing concordance,” Theor. Comput. Sci., vol. 349, no.
2, pp. 202–229, 2005.

[8] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM J. Res. Dev., vol. 3, no. 3, pp. 210–229, 1959.

[9] M. Buro, “From simple features to sophisticated evaluation functions,”
in Proc. 1st Int. Conf. Comput. Games, Tsukuba, Japan, Nov. 1998, pp.
126–145.

[10] D. Gomboc, T. A. Marsland, and M. Buro, “Evaluation function tuning
via ordinal correlation,” in Advances in Computer Games. Berlin,
Germany: Springer–Verlag, 2003, pp. 1–18.

[11] G. Tesauro, “Temporal difference learning and TD-Gammon,”
Commun. ACM vol. 38, no. 3, pp. 58–68, Mar. 1995 [Online]. Avail-
able: http://www.research.ibm.com/massdist/tdl.html

[12] J. Baxter, A. Tridgell, and L. Weaver, “Learning to play chess using
temporal differences,” Mach. Learn., vol. 40, no. 3, pp. 243–263, 2000.

[13] M. L. Ginsberg, “GIB: Steps toward an expert-level bridge-playing pro-
gram,” in Proc. 16th Int. Joint Conf. Artif. Intell., 1999, pp. 584–589.

[14] B. Sheppard, “World-championship-caliber scrabble,” Artif. Intell.,
vol. 134, no. 1-2, pp. 241–275, Jan. 2002.

[15] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron, “The challenge
of poker,” Artif. Intell., vol. 134, no. 1–2, pp. 201–240, 2002.

[16] B. Abramson, “Expected-outcome: A general model of static evalu-
ation.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 2, pp.
182–193, Feb. 1990.

[17] B. Brügmann, “Monte Carlo Go,” Physics Dept., Syracuse Univ., Syra-
cuse, NY, Tech. Rep., 1993.

[18] B. Bouzy and B. Helmstetter, “Monte Carlo Go developments,” in Ad-
vances in Computer Games. Many Games, Many Challenges.. Nor-
well, MA: Kluwer, 2003, pp. 159–174.

[19] H. Yoshimoto, K. Yoshizoe, T. Kaneko, A. Kishimoto, and K. Taura,
“Monte Carlo Go has a way to go,” in Proc. 21st Nat. Conf. Artif. Intell.,
2006, pp. 1070–1075.

[20] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Computers and Games, ser. Lecture Notes in Computer
Science, H. J. van den Herik, P. Ciancarini, and H. H. L. M. Donkers,
Eds. Berlin, Germany: Springer-Verlag, 2006, vol. 4630, pp. 72–83.

[21] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with patterns in Monte-Carlo Go,” INRIA, Tech. Rep. RR-6062, 2006.

[22] G. M. J.-B. Chaslot, M. H. M. Winands, I. Szita, and H. J. van den
Herik, “Cross-entropy for Monte-Carlo tree search,” J. Int. Comput.
Games Assoc., vol. 31, no. 3, pp. 145–156, Sep. 2008.

[23] R. Coulom, “Computing Elo ratings of move patterns in the game of
Go,” J. Int. Comput. Games Assoc., vol. 30, no. 4, pp. 198–208, Dec.
2007.

[24] D. Silver, R. Sutton, and M. Müller, “Sample-based learning and search
with permanent and transient memories,” in Proc. 25th Annu. Int. Conf.
Mach. Learn., A. McCallum and S. Roweis, Eds., 2008, pp. 968–975.

[25] N. Araki, “Move prediction and strength in Monte-Carlo Go program,”
M.S. thesis, Grad. School, Univ. Tokyo, Tokyo, Japan, 2008.

[26] S. Takeuchi, T. Kaneko, and K. Yamaguchi, “Evaluation of Monte
Carlo tree search and the application to Go,” in Proc. IEEE Symp.
Comput. Intell. Games, 2008, pp. 191–198.

[27] S. Takeuchi, T. Kaneko, K. Yamaguchi, and S. Kawai, “Visualization
and adjustment of evaluation functions based on evaluation values
and win probability,” in Proc. 22nd Nat. Conf. Artif. Intell., 2007, pp.
858–863 [Online]. Available: http://www.graco.c.utokyo.ac.jp/

[28] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of su-
pervised learning algorithms using different performance metrics,” in
Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 161–168.

[29] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006.

[30] H. Kume, “Shogi-Club-24-Man-Kyoku-Shu,” (in Japanese) Naitai
Shuppan Co., 2002, ISBN: 4931538037.

Shogo Takeuchi received the B.S., M.S., and Ph.D.
degrees in multidisciplinary sciences from the Uni-
versity of Tokyo, Tokyo, Japan, in 2005, 2007, and
2010, respectively.

Currently, he is the Japan Society for the Promo-
tion of Science (JSPS) Research Fellow at the Uni-
versity of Tokyo. His research interest is in artificial
intelligence for computer games, especially in Shogi.

Tomoyuki Kaneko received the Ph.D. degree in mul-
tidisciplinary sciences from the University of Tokyo,
Tokyo, Japan, in 2002.

Currently, he is an Assistant Professor at the
University of Tokyo. His research interests include
game programming and machine learning. He is
also known to be a developer of a computer Shogi
program, GPSShogi, which was the winner of the
World Computer Shogi Championship in 2009.

Kazunori Yamaguchi received the B.S., M.S., and
Doctor of Science degrees in information science
from the University of Tokyo, Tokyo, Japan, in 1979,
1981, and 1985, respectively.

Currently, he is a Professor at the University
of Tokyo. His research interest is in data models
for database, artificial intelligence, argumentation,
language processing, education, and visualization.

