
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010 229

Current Frontiers in Computer Go
Arpad Rimmel, Olivier Teytaud, Chang-Shing Lee, Shi-Jim Yen, Mei-Hui Wang, and Shang-Rong Tsai

Abstract—This paper presents the recent technical advances in
Monte Carlo tree search (MCTS) for the game of Go, shows the
many similarities and the rare differences between the current best
programs, and reports the results of the Computer Go event orga-
nized at the 2009 IEEE International Conference on Fuzzy Sys-
tems (FUZZ-IEEE2009), in which four main Go programs played
against top level humans. We see that in 9 9, computers are very
close to the best human level, and can be improved easily for the
opening book; whereas in 19 19, handicap 7 is not enough for
the computers to win against top level professional players, due to
some clearly understood (but not solved) weaknesses of the current
algorithms. Applications far from the game of Go are also cited.
Importantly, the first ever win of a computer against a 9th Dan
professional player in 9 9 Go occurred in this event.

Index Terms—Game of Go, Monte Carlo tree search (MCTS),
upper confidence.

I. INTRODUCTION

T HE game of Go is one of the main challenges in artificial
intelligence. In particular, it is much harder than Chess, in

spite of the fact that it is fully observable and has very intuitive
rules.

Currently, the best algorithms are based on Monte Carlo tree
search (MCTS) [1]–[3]; they reach the professional level in
9 9 Go (the smallest, simplest form) and strong amateur level
in 19 19 Go.

During the 2009 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE2009), in Jeju Island, games were played
between four of the current best programs against a top level
professional player and a high-level amateur. We will use the
results of the different games in order to summarize the state
of the MCTS algorithm, the main differences between the pro-
grams, and the current limitations of the algorithm.

1) History of Computer Go: The ranks in the game of Go are
ordered by decreasing Kyu, increasing Dan, and then increasing
professional Dans: 20 Kyu is the lowest level, 19K, 18K, ,

Manuscript received March 15, 2010; revised May 27, 2010; accepted
November 23, 2010. Date of publication December 10, 2010; date of current
version January 19, 2011.This work was supported by the French National
Research Agency (ANR) through COSINUS program (project EXPLO-RA
ANR-08-COSI-004). This work was also supported in part by the National
Science Council of Taiwan under Grants NSC97–2221-E-024–011-MY2 and
NSC99–2923-E-024–003-MY3 and the Computer Center of the National
University of Tainan, Taiwan.

A. Rimmel and O. Teytaud are with the Thème Apprentissage et Optimisation
(TAO), Inria Saclay IDF, LRI, UMR 8623, CNRS—Universite Paris-Sud, 91405
Orsay Cedex, France (e-mail: rimmel@lri.fr).

C.-S. Lee and M.-H. Wang are with the Department of Computer Science and
Information Engineering, National University of Tainan, Taiwan.

S.-J. Yen is with the Computer Science and Information Engineering Depart-
ment, National Dong Hwa University, Shoufeng, Taiwan.

S.-R. Tsai is with the Chang Jung Christian University, Taiwan.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2010.2098876

and 1; 1Dan, 2D, 3D, , and 7D; the first professional Dan 1P
is then considered as nearly equivalent to 7D, followed by 2P,
3P, 4P, , and 9P. The title “top pro” is given to professional
players who recently won at least one major tournament.

2) 9 9 Go: In 2007, MoGo won the first ever game against
a pro, Guo Juan 5P, in 9 9, in a blitz game (10 min per side).
This was done a second time, with long time settings, in 2008,
also by MoGo and against Catalin Taranu 5P. The only wins
as black against a pro were realized by MoGo against Catalin
Taranu (5P) in Rennes (France, 2009) and the win against C.-H.
Chou (Taipei, 2009).

3) 19 19 Go: In 1998, M. Müller could win against Many
Faces Of Go, one of the top programs at that time, in spite of
29 handicap stones, an incredibly big handicap, so big that it
does not make sense for human players. In 2008, MoGo won
the first ever game in 19 19 against a pro, K. Myungwan,
8P, in Portland; however, this was with the largest usually ac-
cepted handicap, i.e., nine stones. CrazyStone then won against
a pro with handicap 8 and 7 stones in Tokyo (Aoba Kaori 4P, in
2008); finally, MoGo won with handicap 7 against a top level
human player, C.-H. Chou (9P and winner of the famous LG
Cup in 2007), and against a 1P player with handicap 6 in Tainan
(Taiwan, 2009).

During FUZZ-IEEE2009 there was the first win of a com-
puter program (the Canadian program Fuego) against a 9P
player in 9 9 as white. On the other hand, none of the pro-
grams could win against C.-H. Chou in 19 19, in spite of the
handicap 7, showing that winning with handicap 7 against a top
level player is still almost impossible for computers, in spite of
the win by MoGo a few months earlier with handicap 7. Also,
during FUZZ-IEEE2009, no program could win as black in
9 9 Go with komi 7.5 against the top pro.

4) The Two Human Players: C.-H. Chou is a top level profes-
sional player born in Taiwan. He became professional in 1993
and reached 7P in 1997 and 9P in 1998. He won the LG Cup in
2007, beating H. Yaoyu 2 to 1.

S.-S. Chang is a 6D amateur from Taiwan.
5) Technical Terms From the Game of Go: In this section, we

define several Go terms. A group is a connected set of stones
(for 4-connectivity). A liberty is an empty location, next to a
group; a group is captured when it has no more liberties; it is
then removed from the board. A group is termed dead when it
is definitely going to be captured. An atari is a situation in which
a player plays a move in the liberties of a group, so that only one
liberty remains. A semeai is a fight between two groups, each of
them being alive only if it kills the other (unless seki applies).
A seki is a situation in which two groups have common liberties
and none of the players can play in these liberties without being
in self-atari. The komi is the number of points given to white, as
a compensation for playing second. The handicap in a game is
a number of stones; with handicap , the black player plays

1943-068X/$26.00 © 2010 IEEE

230 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

stones before white plays its first move. Even games are games
with handicap 0 and komi around 7.5 (the precise komi depends
on federations and rules). A moyo is an area of the board where
one player has a lot of influence and that could become territory.

The rest of this paper is organized as follows. Section II de-
scribes the main concepts in Monte Carlo Go. Section III intro-
duces the results and comments for the FUZZ-IEEE2009 Com-
puter Go invited session. Section IV concludes.

II. MCTS ALGORITHM AND IMPLEMENTATIONS

Section II-A describes the main concepts in Monte Carlo
Go. Section II-B describes techniques for dealing with the large
action space. Section II-C explains how to extract additional
useful information from simulations. Section II-D presents
some expert modules useful for biasing the Monte Carlo part.
Section II-E will summarize some known differences between
the programs.

A. Main Concepts in Monte Carlo Go

The main concepts in MCTS were defined in [1]–[3]; one of
the most well-known variants is upper confidence bounds ap-
plied to trees [3]. The main idea is to construct a tree of possible
futures. This tree will be biased in order to explore more deeply
moves that have good results so far. This is done by the repe-
tition of four steps as long as there is some time left: descent,
evaluation, update, and growth.

In the descent part, we use the statistics of the tree to choose
new nodes until we reach a node outside the tree. This is done by
considering that the selection of a child is a bandit problem [4].
In a bandit problem, you have a fixed number of arms; each arm
is associated to an unknown probability distribution. At each
turn you select an arm and receive a reward that is drawn ac-
cording to the distribution of the arm. Your goal is to maximize
your rewards. The formula used to solve this problem is called
a bandit formula and is usually based on a compromise between
exploration and exploitation; a classical example is given below.
This formula is used during all the descent step.

In the evaluation part of the algorithm, also called playout, the
goal is to have a value for the nodes selected during the descent
part. In order to do that, a legal move is chosen randomly (but
not uniformly) until the game is finished; see Section II-D.

In the update part, the statistics of the tree are updated ac-
cording to the result of the game.

In the growth part, the node just outside the tree selected at
the end of the descent part is added to the tree.

All algorithms based on this principle will be termed MCTS
in the rest of this paper.

An efficient way of solving the bandit problem is to choose
the move with the highest upper confidence bound. This is done
with the UCB formula. It consists in choosing the child of the
current situation , which maximizes

(1)

where

the score of child of node ;

the number of simulations of move ;

the number of simulations of state ;

the number of won simulations of node ;

the constant that controls the compromise between
exploitation of good moves and exploration of new
moves.

When an other term that plays the role of exploration, like the
rapid action value estimate (RAVE) values originating in [5],
is added to the formula, the constant becomes usually very
small or even zero

(2)

The “RAVE” values will be defined in (4). In the rest of this
paper, we will identify the node and the move played to obtain

from ; this is an approximation only, as MoGo has a trans-
position table as well as many strong programs; this will just
clarify the equations.

When the bandit part is based on (1) or a variant of it, the
MCTS is termed upper confidence trees (UCT) [3]. In the case of
Go, more sophisticated formulas are usually preferred; nonethe-
less, UCT provides a very sound and principled way of de-
signing a general purpose MCTS. This is in particular important
as MCTS is particularly well known for its efficiency in general
game playing, i.e., when the game is not known in advance and
the program must read the rules (in a given formalism) before
playing [6].

There are also several other modules that enhance the perfor-
mance, detailed in sections below.

B. Bandits for Large Action Spaces: Introducing
a Bias in the Tree Search

The most classical idea for choosing a move in the tree part is
to maximize the score given in (1). However, (1) gives score
to moves that have no simulation. This implies that if there are

legal moves at situation , then the first simulations at node
will all choose one different initial move. This is of course a

poor policy. Therefore, other solutions have been proposed: first
play urgency, progressive widening, and progressive unpruning.
The last two are based on ranking heuristics, which are detailed
later.

1) First Play Urgency: Wang and Gelly [7] propose the “first
play urgency” (FPU); this is a constant score, given to moves
with no simulations. The FPU can be improved, e.g., by re-
placing the constant by a function of Go expertise. However,
FPU was replaced by other rules in all strong implementations
(note however that for other applications with less expertise
available, FPU might be a good rule of thumb).

2) Progressive Widening: Coulom [8] proposed progressive
widening, consisting in optimizing (1) only among moves with
index lower than ; precisely

(3)

RIMMEL et al.: CURRENT FRONTIERS IN Computer Go 231

for the th simulated move at situation . This requires the use
of a function , which gives to each legal move at
situation a rank. Usually, a prior is computed for each at
situation , and then is the rank of move according
to this prior; therefore, what is really needed for progressive
widening is a score for each move, as for progressive unpruning.

It has been shown in [9] that even if is a random
ranking of moves, this algorithm can provide an improvement;
in applications, ranges between and depending on
the efficiency of the heuristic [8], [10]. Interestingly, with pro-
gressive widening, UCT can be applied to problems with infinite
action space. However, in many problems and in particular in
Go and Havannah, progressive unpruning (defined below) per-
forms better and has been chosen in recent implementations [5],
[11].

3) Progressive Unpruning: Instead of an abrupt change as
progressive widening, which adds new moves to the pool of
moves considered in the of (3), Chaslot et al. [2] pro-
pose to add a term in (1), e.g., as follows:

is a heuristic function for valuating move in state .
The formula above can be adapted in order to take into account
RAVE values as in (2).

4) A Priori Evaluation of Moves: There are two main forms
of a priori evaluations of moves, cumulated in best implemen-
tations.

• Patterns. In the case of Go, Chaslot et al. [2], Coulom
[8], and Bouzy and Chaslot [12] propose the use of pat-
terns extracted from a database of professional games
for building the function of progressive widening
(3) or the function of progressive unpruning (4). Com-
plex and essentially empirical formulas have been derived
for this; they work roughly as follows for estimating the
value of a move:
— find the biggest pattern, centered on this move, which

appears in ;
— the empirical probability for this pattern to be played

in (the confidence of this pattern, in the usual database
terminology);

— the frequency of this pattern in (the support of
the pattern, in the usual database terminology, i.e., the
number of times the move was played divided by the
size of);

— the heuristic value is then a linear compromise between
and (being much stronger).

The reader is referred to [2], [8], and [12] for various for-
mulas combining and into a . There is no
widely accepted formula; for most important patterns (like,
e.g., the empty triangle, the wall, the keima and many
others as described in [13]), it is worth tuning manually the
coefficients by tedious experiments [14]— the usual gen-
eral formulas do not reach the state of the art performance.

• Tactical and strategical rules. Important tactical or strate-
gical rules are used for biasing the tree search, e.g., atari,

Fig. 1. Plot of the “Owner” value: blue areas (dark in black and white) are
expected to belong to black. We see that the owner value suggests playing around
the frontier, in order to extend the domain owned by the player. The drawback
is that in, e.g., semeais the Monte Carlo simulator is wrong (e.g., in the upper
left part, the colors show that the territory belongs to black, while; in fact, the
black group is dead and the white lives). The figure and the semeai example on
the upper left corner are kindly provided by R. Coulom [16].

extensions, line of influence (positive value for the moves
located on the third line), line of death (negative value for
the sides of the board); see [13] for more. Some papers also
propose common fate graphs [15]; however, these common
fate graphs have not been extensively used in successful
MCTS implementations, except if one considers that the
use of the notion of groups is a particular simple form of
common fate graphs.

C. Side-Information Extracted From Simulations

MCTS is based on a huge number of simulations. The only
information that is kept, from these simulations, is the number
of won/lost games at each situation of the tree. It is somewhat
natural to try to extract more information from the simulations.
The current main works around that are the owner information,
the RAVEs, and the criticality.

1) Owner Information: “Owner information” [1] is the
heuristic consisting in computing, for each location of a board
, with which probability it belongs (at the end of simulations

containing) to the player whose turn it is to move. If the
probability is close to , the move is considered to be impor-
tant; in CrazyStone, the probability of the move is increased
in the tree [in (3)]. For example, in Fig. 1 extracted from
[16], we see the probability for a move to be black/white at the
end; this is the owner information, and the heuristic consists in
playing more often, for white (resp., black), in locations which
will be white with probability 33% (resp., 67%).

2) Rapid Action Value Estimates: RAVEs ([5], and see also
[17] and [18]) are a heuristic value for moves. The RAVE value
for move in situation is as follows:

(4)

232 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

if black (resp., white) is to play at , with
• number of won simulations where black

(resp., white) plays first at after situation ;
• number of simulations where black (resp.,

white) plays first at after situation .
The important point, which makes the difference with the clas-
sical UCT values, is that black (resp., white) plays first (before
white) at after situation , but not necessarily at situation .
RAVE values are updated at each simulation, and can only be
used when a table of RAVE values is stored in each node (this
moderately extends the space complexity, as this is just storing
one more value alongside the usual statistics). They provide a
big improvement (see discussion in Section II-E).

3) Criticality: Criticality has been specified in [16]. The idea
is a generalization of the owner information. Whereas the owner
information suggests playing in unsettled territory (see Fig. 1),
the criticality suggests playing in locations highly correlated
with the victory (the semeai in the upper left part of the figure).
Formally, the criticality of a location in a situation is de-
fined as follows:

where

the number of simulations including
situation won by the owner of ;

the number of simulations including
situation ;

(resp.,) the number of simulations at won by
white (resp. black);

[resp.,] the number of simulations at with
owned by white (resp. black).

We note that the formula is symmetric with regard to black and
white. The first term increases for locations highly correlated
with victory and the second term is a normalization; the formula
is intuitively a covariance.

Criticality was tested without success in Zen (according to
the author’s post in the Computer Go mailing list) and provided
a very little improvement in MoGo. This might be due to the
redundancy with other heuristics (e.g., rapid action value esti-
mates or Go expertise); nonetheless, criticality and variants of it
are the only current tool for detecting semeais, a very important
weakness of MCTS/UCT (see Section II-D).

D. Expertise in the Playouts

The design of the playouts is a very sensitive part of the al-
gorithm. A small modification usually has a huge impact on the
performance, in one way or the other. That is why it is very in-
teresting to improve it. It is also the only way to correct some
inherent problem of the UCT algorithm as, for example, in the
case of nakade (see below). However, except in some specific
cases, the reasons explaining the success of a modification are
still unknown. The current theory is that the modification should
improve the level of the Monte Carlo simulations while keeping
the diversity and removing the undue bias. As this is very hard

to predict, all the following modifications have been validated
by numerous experiments.

1) Sequence-Like Monte Carlo (Originating in MoGo): The
main innovation of the early versions of MoGo was the design
of the playouts [7], [19]. They pointed out that improving the
strength of the playouts directly could lead to a decrease of per-
formance for the overall algorithm. That is why, whereas pre-
vious works on the playouts focused on increasing the quality
of the Monte Carlo player as a standalone player, this work de-
signed a Monte Carlo from a very empirical point of view (ac-
cepting a modification of the playouts if the MCTS based on
these playouts plays better, and not if the playout generator plays
better). All strong algorithms now use “sequence-like” simula-
tions, in which a move is highly correlated to the previous move.
More precisely, a move is played in the immediate neighbor-
hood (in 8 connectivity) of the last move if it matches a data-
base of handcrafted patterns, which are reasonable for human
experts. If there are several such moves, one of them is randomly
chosen and played; if not, then a randomly chosen move in the
board is played, as shown in Algorithm 1.

Algorithm 1: Algorithm for choosing a move in Monte
Carlo simulations. The patterns used for “sequential” moves
are described in [19]. The implementation is a bit more
complicated than that, with some levels more, as well as
in Fuego; a significantly implementation is the one used in
CrazyStone (and probably Zen as well), which updates a
complete table of probability for all moves.

if the last move is an atari, then
Save the stones that are in atari if possible (this is checked
by liberty count).

else
if there is an empty location among the eight locations
around the last move that matches a pattern then

Sequential move: play randomly uniformly in one of
these locations.

else
if there is a legal move then

Legal move: Play randomly a legal move
else

Return pass.
end if

end if
end if

A crucial property of the playouts is that it should be balanced
(i.e., equilibrated between black and white); this is much more
important than having a strong playout generator. Ultimately, if
the players play exactly equally well in all situations, then the
playouts are a perfect evaluation function. The weaknesses of
MCTS (detailed later) are in situations in which the simulations
are not equilibrated; for example, in semeais, Monte Carlo may
give around 50% of probability of winning the semeai to each
player, even if the semeai is a clear win for one of the players.
This idea of balancing the simulations was developed in [7] and

RIMMEL et al.: CURRENT FRONTIERS IN Computer Go 233

Fig. 2. (a) A real game played and lost by MoGo; MoGo (white) without spe-
cific modification for the nakade chooses H4 (triangle); black plays J4 (square)
and the group F1 is dead (MoGo loses). The right move is J4 (square); this move
is chosen by MoGo after the modification presented in Section II-D. (b)–(d)
Other similar examples in which MoGo (as black, without the nakade module)
evaluates the situation poorly and does not realize that his group is dead. The
modification solves the problem for (a)–(d). (e) Example of more complicated
nakade, which is not solved by MoGo (the white group will not be able to make
two eyes after capturing the black stones and therefore will die).

[19]; there is a recent effort in automatizing this [20], [21], with
not yet good results on big boards.

A counterpart to “sequence-like” simulations is the use of
the “fill board” modifications, a kind of “Tenuki”-rule, which
switches to another (empty) part of the goban and therefore pre-
vents the loss of diversity in the simulations. This modification
is described in detail in [13]. This is somehow controversial, as
this rule 1) brings very big improvements in MoGo, 2) is not
yet tested in many implementations, and 3) is only efficient for
long enough time settings (and can be detrimental for short time
settings).

2) Nakade: A nakade is a situation in which a surrounded
group has a single large internal, enclosed space in which the
player will not be able to establish two eyes if the opponent plays
correctly. Most of current Go programs do not estimate properly
this kind of situation. It is not evaluated by the tree because no
player wants to play there (the Monte Carlo evaluation is the
same unless many moves are played in the nakade) and it is
not correctly handled by the playouts without the addition of
a specific rule. This situation is a good example of case where
the addition of expert knowledge in the playouts can contribute
to solving the problem. In MoGo, the rule consists in playing
at the center of three empty locations surrounded by opponent
stones. This rule is called in Algorithm 1 before other rules. It
is a simple and efficient modification but it does not work in all
cases of nakade. Examples of nakade solved and not solved by
this method are given in Fig. 2. To the best of our knowledge,
the detailed implementation of Nakade rules in other programs
is not known in details; in Fuego, there is a simple rule of moving
single stone self-ataries to the adjacent point.

3) Semeai: Semeai are situations where two opponent groups
cannot live without one killing the other or being in seki with
each other. It happens often in Go game and the result of the
semeai (which group is alive at the end) has a huge impact on
the score. That is why it is really important for a Go program
to handle such situations correctly. However, it often requires a
very long sequence of complicated moves to determine the re-
sult; even the order of the moves can matter. In this case, the tree

Fig. 3. (a) Example of situation that is poorly estimated without approach
moves. Black should play B before playing A for killing the white group and
live. (b) Situation that is not handled by the “approach moves” modification.

Fig. 4. Two-liberties killing rule: if it is black turn, the rule activates and black
plays on the triangle. Two-liberties escape rule: if it is white turn, the rule acti-
vates and white also play on the triangle to prevent black from playing it.

is often not deep enough to solve the semeai. There is for the mo-
ment no good solution to handle perfectly those situations but
some modifications of the Monte Carlo simulations can help.
For example, we introduce in MoGo the approach move. This
is described on the left of Fig. 3; black should play in be-
fore playing in for killing white; this is an approach move.
In MoGo, we improve the behavior of Monte Carlo simulations
by replacing self-atari moves by a connection to another group
when this is possible. More details are given in [13]. However,
as shown on the right of Fig. 3, there are still simple semeai not
correctly handled by MoGo.

4) Two-Liberties Rules: A lot of rules in the playouts are
based on the number of liberties of a group. The basic rules,
like avoiding atari and killing group, are based on groups with
one liberty. By creating rules for groups with two liberties, we
can cover a larger number of situations and improve the quality
of the simulations. For example, the two-liberties killing rule is
“if when removing one of the liberties, the group has no way
to escape (no move can improve the number of liberties), then
play it” and the corresponding two-liberties escape rule is “if
one group has two liberties and the opponent can play a two
liberties killing move, then play a move that prevents it.” Those
rules are only examples. They are illustrated on Fig. 4; see also
[22]. Similar rules are implemented in MoGo, ManyFaces, and
Fuego.

5) Other Rules: Other classical rules consist in avoiding big
self-atari (but this can be complicated for nakade situations);
a detailed analysis of several rules (captures, extensions, dis-
tance to the borders, ladder atari, and ko atari) and their relative
weights can be found in [8]. Each program has his own expert

234 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

TABLE I
DIFFERENT MODIFICATIONS OF THE BANDIT FORMULA USED IN EACH

PROGRAM (TOP) AND OF THE PLAYOUTS (BOTTOM). THE XX MEANS

THAT THE AUTHORS EMPHASIZE A BIG WORK ON THIS PART.
LEARNED PATTERNS REFER TO BIG DATABASES OF PATTERNS

AUTOMATICALLY LEARNED FROM GAMES AND NOT TO

HANDCRAFTED PATTERNS. IN ZEN, AS IN CRAZYSTONE,
A FULL-BOARD PROBABILISTIC MODEL UPDATES THE

PROBABILITY OF ALL LOCATIONS IN THE BOARD

AT EACH MOVE

rules and they appear to be very implementation dependent. A
rule that works for one program does not necessarily work for
another. Furthermore, when a program is modified, the rules
might not work any more or at least not with the same parame-
ters. Therefore, using expert knowledge in the playouts is very
time consuming in term of experiments. However, it is worth
doing it as we can see, for example, with the program Zen: it is
currently ranked 2-D on KGS and, according to its creator, pos-
sesses a lot of hard coded Go knowledge in its playouts.

E. Differences Between Programs

We here briefly survey the differences between the four Com-
puter Go programs involved in the games against humans. There
is not much publicly available information on Zen; Zen is ac-
cording to his author’s post on the Computer Go mailing list
based on papers describing CrazyStone [8], with a lot of expert
knowledge added.

1) Differences in the Playouts: All implementations use se-
quence-like Monte Carlo based on local patterns. The nakade
modification described above is used in MoGo and provides a
big improvement, in particular, in 9 9. Fill board is used in
MoGo but not in other implementations.

2) Differences in the Bias for the Bandit Part: There are three
main modifications that can be applied to the bandit part of the
algorithm: i) RAVEs [5], ii) a database of patterns (as in [2] and
[8]), and iii) expert knowledge (patterns, tactical, and strategical
rules detailed in [13]). The CrazyStone algorithm in [8] handles
ii) and iii) in a unified framework.

The use of those modifications in the different programs is
presented in Table I.

Remarks:
• In MoGo, the weight of i) in 19 19 had to be reduced

when databases of patterns (providing offline heuristic
values for moves) have been added; this suggests that
RAVE values are a very good heuristic (also for other

games [11]), but their weight should be reduced when
other heuristics are available.

• ii) is removed in 9 9 for optimal performance.
• ii) is seemingly more developed in ManyFaces, MoGo, and

Zen than in Fuego; iii) is more developed in ManyFaces
and Zen than in MoGo and in Fuego.

• iii) is always efficient, whenever RAVE values or databases
of patterns are present, and this suggests that databases are
a great tool as they need little development and expertise,
but databases are not enough to catch the tactical knowl-
edge of experts.

3) Other Differences: In 9 9, MoGo uses a huge automat-
ically built opening book. As shown in [23], this provides a
big improvement; also it saves up a lot of time as many moves
are immediately played by the opening book thanks to permu-
tations/rotations/symmetries; however, some bad moves are
sometimes introduced in this automatically generated opening
book and corrections by experts analyzing games are very
efficient. Zen and Fuego use handcrafted 9 9 opening books,
but Fuego contains also some weak moves in the opening book
as shown later.

All implementations use a multicore parallelization (each
core performs simulations independently of the others, but
all cores write their results in the same tree). Some of them
use lock-free hashtables for improved performance [24], [25].
MoGo, ManyFaces, and Fuego all use also message-passing
parallelization, i.e., can benefit from the computational power
of clusters. This is known as much more efficient in 19 19
than in 9 9. See [26]–[29] for more information on the paral-
lelization. Later than the FUZZ-IEEE2009 event, Zen has been
equipped with the same message-passing parallelization.

III. RESULTS AND COMMENTS

This section presents the games between humans and
computers (Many Faces of Go, MoGo, Fuego, Zen), in
FUZZ-IEEE2009. The overall results are presented in Table II
and discussed in the rest of this paper. The hardware used in
the competition is presented in Table III.

All comments around the game of Go are given by experts:
C.-H. Chou 9P, S.-S. Chang 6D, S.-J. Yen 6D, and S.-R. Tsai 6D.
The ability of MCTS for fights is illustrated in Section III-A.
The 9 9 opening books are discussed in Section III-B. The
weaknesses in corners are discussed in Section III-C. The ag-
gressivity of the programs is discussed in Section III-D. The
weakness in semeais and in seki, probably the current most im-
portant weakness, is discussed in Section III-E.

A. Ability for Fights

MCTS/UCT algorithms are known for being very strong in
killing. This is illustrated in the game won by Zen as white
against S.-S. Chang 6D [Fig. 5(a)].

B. 9 9 Opening Books

We distinguish below handcrafted opening books and self-
built opening books.

1) Handcrafted Opening Books: Fuego’s opening book is
handcrafted; nonetheless, Fuego plays a bad move very early,

RIMMEL et al.: CURRENT FRONTIERS IN Computer Go 235

TABLE II
OVERVIEW OF THE RESULTS; GAMES PLAYED DURING FUZZ-IEEE2009 AT JEJU ISLAND, KOREA

TABLE III
HARDWARE USED BY THE COMPUTERS

Fig. 5. (a) Game won by Zen as white against S.-S. Chang 6D; black made a
mistake (move 29 at B6 instead of B4), immediately punished by white killing
E5. (b) Game won by Zen as black against S.-S. Chang 6D (black plays E3 and
wins). In both cases, Zen had good opening moves. As black, Zen had a big
moyo.

namely the “kosumi” [move 3, Fig. 6(a)]. This move was sup-
posed to be good with a komi of 6.5 but is not aggressive enough
with a komi of 7.5. Kosumis (diagonal move), according to [23],
are very often bad moves in the beginning of a 9 9 game. On
the other hand, Fuego won as white with good opening moves
(only three moves in the opening book); see Fig. 6(b).

Opening moves by Zen were all good in 9 9 according to
experts; Zen won one game as black and one game as white
against S.-S. Chang 6D (Fig. 5). There were very few moves in
the opening book.

2) Self-Built Opening Books: MoGo has a huge opening
book built on a cluster [23]. However, the two openings (black
and white) contained mistakes that were exploited by C.-H.
Chou 9P, who won both as black and as white against MoGo
(Fig. 7).

Fig. 6. (a) Game won as white by C.-H. Chou 9P against Fuego. Move 3 (hand-
crafted move from the opening book) is a kosumi and is considered to be bad
in early 9� 9 game. (b) Game won as white by Fuego against C.-H. Chou 9P;
according to experts the opening by Fuego was good. 33 was in A2, 36 in A1,
and 39 in A2.

Fig. 7. Situation at the end of MoGo’s opening book as (a) white and (b) black.
According to C.-H. Chou 9P, the situation at the end of the opening book (the
two situations presented here) was bad. (a) We could not conclude which move
should be corrected—no really bad move, but at that point in the game, the pro
considers that the situation is lost—maybe the opening by black is just too well
known and, due to the high 7.5 komi, human can find the correct answer for
white. (b) Move 7 is bad.

C. Weaknesses in Corners

It is often said that MCTS algorithms have a bad strategy, as
they try to develop a big moyo instead of focusing in corners;
this has been related to cosmic Go. However, it is also often said
that computers have a strong sense of “aji,” which is a deep con-
cept—the influence that one might expect from his dead stones.
In 9 9, having a big moyo can be efficient, as in, e.g., Fig. 5(b)
where Zen, with a big moyo only, wins the game as black. On
the other hand, in 19 19, protecting the moyo is very difficult,
and it is therefore often preferable to take care of corners.

236 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

Fig. 8. (a) ManyFaces was black, handicap 7, against C.-H. Chou 9P and lost with the four corners taken by the pro; the pro also invaded the moyo. (b) Fuego was
black, H4, against S.-S. Chang 6D. White was in very good situation on the picture, but played a bad move, L19, instead of L15, which would invade the moyo
and win. Fuego could keep the moyo and therefore won.

Fig. 9. MoGo is playing as black against S.-S. Chang with H4. MoGo plays
the circled black stone, trying to kill the two white stones; this was impossible,
and as MoGo was keeping trying to kill white, it lost the upper center part of
the goban and lost.

For example, ManyFaces lost against C.-H. Chou 9P in spite
of handicap 7 with four corners taken by the pro, and then the
moyo also invaded [N15 and N11 at least can have access to
the moyo; Fig. 8(a)]. Zen and MoGo lost against C.-H. Chou
9P with the same settings. S.-S. Chang won his games with H4,
except the one against Fuego [Fig. 8(b)] in which he made a
mistake and could not invade the moyo.

D. Programs Are Too Aggressive

It is often said that MCTS programs are quite efficient for
killing, but that they are too confident in their ability to kill. This
is confirmed in, e.g., Fig. 9.

Fig. 10. (a) ManyFaces plays as white and has two groups alive; nonetheless,
black wins thanks to the seki in the upper right corner (the two black stones are
alive). (b) ManyFaces plays as black and loses by semeai in the lower part. In
both cases, ManyFaces was playing against S.-S. Chang 6D.

E. Weaknesses in Semeais and Sekis

MCTS programs are known for being weak in semeais; this
is also true for sekis.

Fig. 6, where Fuego made a mistake in the opening, is also an
example of semeai, as B8 could only live by killing A5; how-
ever, there are many more liberties for white which easily kills
B8 by nakade.

Fig. 10(a) shows an example in which a seki was used by
the human for winning as black against ManyFaces in 9 9.
Fig. 10(b) shows an example in which the human won by semeai
against ManyFaces, also in 9 9.

Fig. 11(a) shows that Zen lost a semeai in the upper right
corner, and Fig. 11(b) shows that MoGo lost a semeai in the

RIMMEL et al.: CURRENT FRONTIERS IN Computer Go 237

Fig. 11. (a) Zen was black, handicap 7, against C.-H. Chou 9P and lost with three corners taken by the pro (white stones on the bottom right are dead); the pro
also invaded the moyo. The situation was good for black at move 65 but after that Zen made some mistakes by not defending the corners, which caused the loss. (b)
MoGo was black, H7, against C.-H. Chou 9P; as in other 19 � 19 games, the pro takes most of the corners, invades the moyo, and wins. In this situation, MoGo
played F13 (which is of little interest as the white group E13–E14 is in dead ladder) and the pro played K4, which invades the moyo. MoGo could have prevented
the invasion by playing K4 itself instead of F13.

upper right corner, and only understood it when the situation
was completely clarified by the pro.

IV. CONCLUSION

During FUZZ-IEEE2009 in Jeju Island, Fuego won the first
ever victory of a computer against a top pro in 9 9 with komi
7.5 as white. Komi should be smaller according to the experts,
if we want the setting to be fair; maybe 6.5 makes the game
more equilibrated; this would have a big impact on the opening
book. The 9 9 opening books could easily be made stronger
with the help of high-level players; current handcrafted opening
books are too short, and automatically built opening books con-
tain errors. Humans suggest 13 13 as a future challenge, and
also consider that ensuring a win with handicap 7, from the cur-
rent strength of programs, should be possible if they make fewer
mistakes in the corners early on. One possible way of dealing
with this is to include a big joseki database; yet, if nobody has
succeeded yet in doing so, one can think that this is nontrivial.

Technically speaking, semeais and sekis are still poorly an-
alyzed by MCTS, in spite of much research on criticality [16]
and introduction of tactical solvers [30]. Also, MCTS programs
are much too interested in the moyo and neglect the corners.
There is no sharing of information between one branch of the
tree and another, and no use of machine learning for automati-
cally adapting the playouts.

It is interesting to point out the tools that were used also
in other successful applications of MCTS/UCT. UCT is the
most classical formula used in one-player applications (see
[10] and [31] for nonlinear optimization and active learning,
respectively), but there are other bandit rules also (see [32]

for optimization on grammars, using max-bandits). There are
plenty of applications to other games; for Havannah (a game
that is specially difficult for computers and for which the
RAVE heuristic is highly efficient [11]), general game playing
[6]; multiplayer games [33] and in particular multiplayer Go
[34] and Settlers of Catan [35]. It has been shown that for
sudden-death games there are fruitful possible modifications
[36], and for partially observable games like Phantom Go
heuristic adaptations have been proposed [36], [37]; a prin-
cipled application to the partially observable case has been
proposed in [10] but it is deeply limited to one-player applica-
tions.

ACKNOWLEDGMENT

The authors would like to thank the 2009 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE2009) for the
opportunity of organizing the Computer Go event in Jeju Island
during FUZZ-IEEE2009. They would also like to thank the
human experts who played against the programs and provided
comments, and the authors of the different programs for joining
the event. The authors would like to thank R. Coulom for kindly
providing Fig. 1. They would also like to thank Y.-L. Wang and
Prof. S.-C. Hsu.

REFERENCES

[1] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Proc. 5th Int. Conf. Comput. Games, P. Ciancarini and
H. J. van den Herik, Eds., Turin, Italy, 2006, pp. 72–83.

[2] G. Chaslot, M. Winands, J. Uiterwijk, H. van den Herik, and B. Bouzy,
“Progressive strategies for Monte-Carlo tree search,” in Proc. 10th
Joint Conf. Inf. Sci., P. Wang, Ed. et al., 2007, pp. 655–661.

238 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010

[3] L. Kocsis and C. Szepesvari, “Bandit-based Monte Carlo planning,” in
Proc. Eur. Conf. Mach. Learn., 2006, pp. 282–293.

[4] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” in Advances in Applied Mathematics. New York: Elsevier,
1985, vol. 6, pp. 4–22.

[5] S. Gelly and D. Silver, “Combining online and offline knowledge in
UCT,” in Proc. 24th Int. Conf. Mach. Learn., New York, 2007, pp.
273–280.

[6] S. Sharma, Z. Kobti, and S. Goodwin, “Knowledge generation for im-
proving simulations in UCT for general game playing,” in Proc. 21st
Australasian Joint Conf. Artif. Intell., Berlin, Heidelberg, 2008, pp.
49–55.

[7] Y. Wang and S. Gelly, “Modifications of UCT and sequence-like sim-
ulations for Monte-Carlo Go,” in Proc. IEEE Symp. Comput. Intell.
Games, Honolulu, HI, 2007, pp. 175–182.

[8] R. Coulom, “Computing ELO ratings of move patterns in the game
of go,” in Proc. Computer Games Workshop, Amsterdam, The Nether-
lands, 2007.

[9] Y. Wang, J. Y. Audibert, and R. Munos, “Algorithms for infinitely
many-armed bandits,” Advances Neural Inf. Process. Syst., vol. 21,
2008.

[10] P. Rolet, M. Sebag, and O. Teytaud, “Optimal active learning through
billiards and upper confidence trees in continuous domains,” in Proc.
Eur. Conf. Mach. Learn., 2009.

[11] F. Teytaud and O. Teytaud, “Creating an upper-confidence-tree pro-
gram for Havannah,” in Proc. Adv. Comput. Games, Pamplona, Spain,
2009.

[12] B. Bouzy and G. Chaslot, G. Kendall and Simon Lucas, Eds.,
“Bayesian generation and integration of k-nearest-neighbor patterns
for 19� 19 Go,” in Proc. IEEE Symp. Comput. Intell. Games, Colch-
ester, U.K., 2005, pp. 176–181.

[13] G. Chaslot, C. Fiter, J. B. Hoock, A. Rimmel, and O. Teytaud, “Adding
expert knowledge and exploration in Monte-Carlo tree search,” in Proc.
Adv. Comput. Games, Pamplona, Spain, 2009.

[14] C. S. Lee, M. H. Wang, G. Chaslot, J. B. Hoock, A. Rimmel, O. Tey-
taud, S. R. Tsai, S. C. Hsu, and T. P. Hong, “The computational in-
telligence of MoGo revealed in Taiwan’s Computer Go tournaments,”
IEEE Trans. Comput. Intell. AI Games, vol. 1, no. 1, pp. 73–89, Mar.
2009.

[15] L. Ralaivola, L. Wu, and P. Baldi, “SVM and pattern-enriched common
fate graphs for the game of go,” in Proc. Eur. Symp. Artif. Neural Netw.,
2005, pp. 485–490.

[16] R. Coulom, “Criticality: A Monte-Carlo heuristic for go programs,”
Tokyo, Japan, Invited talk at the University of Electro-Communica-
tions, 2009.

[17] B. Bruegmann, “Monte Carlo Go,” 1993.
[18] B. Bouzy and B. Helmstetter, “Monte-Carlo Go developments,” 2003.
[19] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT

with patterns in Monte-Carlo Go,” Inria, France, Rapport de Recherche
INRIA RR-6062, 2006.

[20] D. Silver and G. Tesauro, “Monte-Carlo simulation balancing,” in Proc.
Int. Conf. Mach. Learn., 2009, pp. 119–119.

[21] S. C. Huang, R. Coulom, and S. S. Lin, “Monte-Carlo simulation bal-
ancing in practice,” in Proc. Int. Conf. Comput. Games, 2010.

[22] T. Cazenave, “Playing the right atari,” Int. Comput. Games Assoc. J.,
vol. 30, pp. 35–42, 2007.

[23] P. Audouard, G. Chaslot, J. B. Hoock, J. Perez, A. Rimmel, and O.
Teytaud, “Grid coevolution for adaptive simulations; application to the
building of opening books in the game of go,” Proc. EvoGames, 2009.

[24] R. Coulom, “Lockless Hash table and other parallel search ideas,” Post
on the Computer-Go Mailing List, 2008.

[25] M. Enzenberger and M. Müller, “A lock-free multithreaded Monte-
Carlo tree search algorithm,” in Proc. Adv. Comput. Games 12, 2009.

[26] S. Gelly, J. B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian,
“The parallelization of Monte-Carlo planning,” in Proc. Int. Conf. Inf.
Control Autom. Robot., 2008, pp. 198–203.

[27] G. Chaslot, M. Winands, and H. van den Herik, “Parallel Monte-Carlo
tree search,” in Proc. Conf. Comput. Games, 2008.

[28] T. Cazenave and N. Jouandeau, “On the parallelization of UCT,” in
Proc. CGW07, 2007, pp. 93–101.

[29] H. Kato and I. Takeuchi, “Parallel Monte-Carlo tree search with simu-
lation servers,” in Proc. 13th Game Programm. Workshop, 2008.

[30] T. Cazenave and B. Helmstetter, “Combining tactical search and
Monte-Carlo in the game of go,” in Proc. IEEE Symp. Comput. Intell.
Games, 2005, pp. 171–175.

[31] A. Auger and O. Teytaud, “Continuous lunches are free plus the design
of optimal optimization algorithms,” Algorithmica, vol. 57, no. 1, pp.
121–146, 2009.

[32] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Puschel,
“Bandit-based optimization on graphs with application to library
performance tuning,” in Proc. Annu. Int. Conf. Mach. Learn., DOI:
10.1145/1553374.1553468.

[33] N. R. Sturtevant, “An analysis of UCT in multi-player games,” in Lec-
ture Notes in Computer Science. Berlin, Germany: Springer-Verlag,
vol. 5131, pp. 37–49.

[34] T. Cazenave, “Multi-player Go,” vol. 40, pp. 50–59.
[35] I. Szita, G. Chaslot, and P. Spronck, “Monte Carlo tree search in settlers

of Catan,” in Proc. 12th Adv. Comput. Games Conf., 2009.
[36] M. H. M. Winands, Y. Björnsson, and J. T. Saito, “Monte-Carlo tree

search solver,” vol. 40, pp. 25–36.
[37] T. Cazenave, A Phantom-Go Program, ser. Lecture Notes in Computer

Science, H. J. van den Herik, S. chin Hsu, T. Sheng Hsu, and H. H.
L. M. Donkers, Eds. Berlin, Germany: Springer-Verlag, 2006, vol.
4250, pp. 120–125.

[38] T. Cazenave and J. Borsboom, “Golois wins phantom go tournament,”
Int. Comput. Games Assoc. J., vol. 30, pp. 165–166, 2007.

[39] A. P. Danyluk, L. Bottou, and M. L. Littman, Eds., in Proc. 26th Annu.
Int. Conf. Mach. Learn., Montreal, QC, Canada, Jun. 14–18, 2009.

[40] H. J. van den Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds., in Proc.
6th Int. Conf. Comput. Games, Beijing, China, China, Oct. 1, 2008.

Arpad Rimmel, photograph and biography not available at the time of publi-
cation.

Olivier Teytaud was born in 1975. He received the M.S. degree in computer
science from the University of Normale Sup, Lyon, France, in 1998 and the
Ph.D. degree from the Lyon 2 University, Lyon, France, in 2001.

Currently, he is a Researcher at the Thème Apprentissage et Optimisation
(TAO), Inria Saclay-IDF, Cnrs, Lri, University Paris-Sud, Paris, France. He
works in artificial intelligence, statistical learning, evolutionary algorithms,
and games.

Chang-Shing Lee (SM’09) received the Ph.D. degree in computer science and
information engineering from the National Cheng Kung University, Tainan,
Taiwan, in 1998.

Currently, he is a Professor at the Department of Computer Science and In-
formation Engineering and Director of the Computer Center, National Univer-
sity of Tainan (NUTN), Tainan, Taiwan. His major research interests are in on-
tology applications, knowledge management, capability maturity model inte-
gration (CMMI), meeting scheduling, and artificial intelligence. He is also in-
terested in intelligent agent, web services, fuzzy theory and application, genetic
algorithm, and image processing. He also holds several patents on ontology en-
gineering, document classification, image filtering, and healthcare.

Dr. Lee is the Emergent Technologies Technical Committee (ETTC) Chair
of the IEEE Computational Intelligence Society (CIS) from 2009 to 2010,
and was the ETTC Vice Chair of the IEEE CIS in 2008. He is the Committee
Member of the IEEE CIS International Task Force on Intelligent Agents and
on Emerging Technologies for Computer Go. Additionally, he is also the
member of the IEEE SMC Technical Committee on Intelligent Internet System
(TCIIS). He also serves as an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTATIONAL INTELLIGENCE AND AI IN GAMES and the Journal of Ambient
Intelligence & Humanized Computing (AIHC), an Editorial Board member for
the Applied Intelligence, the Journal of Advanced Computational Intelligence
and Intelligent Informatics (JACIII), and Open Cybernetics and Systemics
Journal, and a Guest Editor for the IEEE TRANSACTIONS ON COMPUTATIONAL

INTELLIGENCE AND AI IN GAMES, the Applied Intelligence Journal, the
International Journal of Intelligent System (IJIS), the International Journal of
Fuzzy Systems (IJFS), and the Journal of Internet Technology (JIT). He is also
the Program Committee member of more than 40 conferences. He is a member
of the Taiwanese Association for Artificial Intelligence (TAAI) and Software
Engineering Association Taiwan (SEAT).

Shi-Jim Yen, photograph and biography not available at the time of publication.

Mei-Hui Wang, photograph and biography not available at the time of publica-
tion.

Shang-Rong Tsai, photograph and biography not available at the time of pub-
lication.

